
Compacting, Composting Garbage Collection

Jake Donham, Carnegie Mellon University

Abstract

Garbage collection is vital for programmer efficiency,
but hides the societal costs of rampant waste of data.
We present a means to reduce the negative externali-
ties of garbage collection through natural mechanisms
of waste reprocessing. We demonstrate a 38% reduc-
tion in allocation on a suite of ML benchmarks, as
well as a 47% increase in the growth of plants fertil-
ized with the rich, loamy byproduct.
Keywords: bioengineering, programming lan-
guages, dung

1 Introduction

While great strides have been made in recent years
in improving the space and time overhead of garbage
collection, as well as its realtime behavior, little at-
tention has been paid to the environmental conse-
quences of the style of “disposable programming”
which garbage collection encourages, in which large
numbers of data structures are created, only to be
thrown away almost immediately. Such abandoned
data puts a strain on the waste management capabil-
ities of a typical software system as well as the social
context in which the system operates. Moreover, the
cultural impact of this style of programming is to en-
courage the wasteful discarding of perfectly good data
which could be repaired and put back into service,
thereby stimulating a vibrant economy of small-scale
local artisans along the lines of neighborhood tailors
and shoemakers.

To address one aspect of this deficiency of existing
methods of garbage collection, we propose compact-

ing, composting garbage collection. The core idea is
that unreachable garbage, once identified by a col-
lection algorithm, should not simply be discarded,
but should be repaired and reused if possible, and
otherwise encouraged to decay into a nutrient-rich
soil. This method is completely orthogonal to tradi-
tional garbage collection algorithms, and in fact we
have implemented it in a family of collectors includ-
ing stop-and-copy, mark-and-sweep, clean-and-jerk,

sit-and-spin, and a hybrid transcendental, intergen-
erational, centrifugal collector.

2 The algorithm

The compacting, composting collector works by seg-
regating the heap into several piles, corresponding to
garbage objects of different ages. This is dual to the
generational approach of segregating live objects of
different ages, and rests on a dual generational hy-
pothesis that “dead objects stay dead”, or, equiva-
lently “objects aren’t getting any younger”. The idea
is that as dead objects age and decompose, they are
moved to successively older piles, which they share
with dead objects of roughly the same age. This
serves to isolate the stinkiest parts of the heap, as
well as to produce, in the oldest generation, a uni-
formly decayed pile which can be scooped out and
used to fertilize future computations.

There are two additional phases of the algorithm:
repair, in which discarded objects which need only a
bit of work with needle and thread, or some common
white glue, or a little oiling, are fixed, cleaned up,
and put back into service; and compaction, in which
garbage piles are pitchforked to break up clumps and
then tamped down with a shovel.

As an optimization, we keep a special pile for in-
organic objects which do not decay on the same
timescale as typical objects. If objects on this pile
cannot be repaired and reused, they may be taken
to the dump or left at the curb for pickup. Also, we
encourage quicker composting by seeding piles with
beneficient bacteria and worms.

3 Our testbed

We have built and measured our collector in the
SILT compiler for Standard ML. SILT (Structured In-
termediate Language, Too) is a structure-preserving
compiler, which compiles programs by successively
transforming them into a series of structured inter-
mediate languages, such as SOIL (Structured Op-

1

erational Intermediate Language) and DIRT (Direct
Intermediate RepresenTation). The SILT approach
provides large benefits in the form of increased com-
piler correctness, additional opportunities for opti-
mization, and an organic, holistic, centered user ex-
perience, man. Can you dig it?

Test programs included a variety of climate-
modelling, SETI-at-Home, and non-violent video
game workloads. We attempted to test the collec-
tor with a nuclear weapon yield computation and a
finance package but found that these programs made
assumptions incompatible with our method.

4 Results

In side-by-side comparisons with a standard collector,
we found that overall 38% of objects could be repaired
and reused across the benchmark suite. The high-
quality compost resulting from the final pile was sold
to local farms at an average price of $112 per ton.

We have omitted detailed graphs in an effort to cut
down on paper.

5 Related work

The most similar work to our is contained in Davis’
thesis [1], which presents the design of a language
(called Lollipop) in which you need only say what you
wish to be done, including a memory management
subsystem that picks up after the programmer and
puts away his or her objects neatly. However, Davis
does not provide an implementation.

In a tour-de-force of analysis, Smith et al. [4] derive
a space bound on waste produced by a herd of Hol-
steins on a farm in Iowa. Jonas [2] proves a theoretical
limit on the efficacy of biocomputational methods, by
a reduction to graph-coloring. Murphy [3] evaluates
the cache behavior of locally-grown objects.

6 Future directions

While our method is effective in reducing the waste
produced by a program, purely through modification
of the garbage collector, the larger problem of waste
management must be addressed further upstream, at
the point that the garbage is created. We are there-
fore re-evaluating methods of explicit memory man-
agement, in which a programmer who knows that a
particular object can be re-used adds it to a free list,

from which future allocations can be made. Further-
more, if the programmer knows that an object is no
longer needed, he or she may explicitly free it for re-
cycling, rather than allowing garbage to accumulate.

Over the long term, we hope to encourage pro-
grammers to move away from comfortable, yet
environmentally-suspect languages such as ML,
which provide automatic memory management and
abstraction facilities that hide the true origin of data
(a form of Marxist commodity fetishism), and return
to the honest, handcrafted code of their forefathers.

7 Conclusion

We have shown that compacting, composting garbage
collection is both feasible and useful. We hope that
this contribution will help bring about a new age of
low-impact programming and green systems.

References

[1] C. Davis. Passive-Aggressive Programming. PhD
thesis, Department of Computer Science, Cran-
berry Melon University, 2001.

[2] J. Jonas. Crop rotation is NP-complete. In Inter-

national Conference on Computational Agricul-

ture, pages 83–91, Braga, Portugal, 2003.

[3] T. Murphy VII. Exploiting data locality: Fresh
bytes and community supported agriculture.
Journal of Environmental Semantics, pages 117–
127, 1998.

[4] J. Smith and Z. Biddleworth. Free-range analysis
and abstract irrigation. In Formal Methods in

Farming, pages 190–197, Ames, Iowa, USA, 1985.

2

