Manifest Adequacy®

Daniel K. Lee

Robert J. Simmons

Carnegie Mellon University

1 First beer

“Wrong? I can’t be wrong! I'm never wrong!
I refuse to be wrong!”
— Anonymous sober type theorist

Out of a well-founded skepticism for the ability of pa-
per to correct for the errors introduced by smudging and
smearing caused by the coffee, beer, and blood spills that are
standard hazards in the daily lives of programming language
researchers, it has been decided that the future of program-
ming languages research is in the formalization of languages
as specifications for computer proof assistants. Commonly,
the encoding of the language is as a script written in the
programming language used to interact with the proof as-
sistant. In the LF community, a great deal of sober thought
has been given to the process in which the LF encoding of
a language can be verified to be an adequate representation
of the intended language. This process is performed by ver-
ifying there exists a compositional bijection between the LF
encoding and the intended language. The failure of an ad-
equacy proof generally implies someone wasted time work-
ing on a language he didn’t even care about. Because ade-
quacy proofs require time that could be more gainfully spent
proving interesting theorems, reading Livejournals, marking
the Wean blackboards with type theory, durnk dialing ex-
girlfriends, grading problem sets, eating tube meat, planning
TGs, creating fonts, hunting penguin thieves, or playing in-
ternet poker, they are never performed in practice.

2 Second beer

We present a novel way of encoding the compositional bi-
jection between the Twelf encodings of a language and the
language it is meant to represent. We call this operator I,
but in order to retain an air of mystery we will refuse to
define the semantics of I here. However, we have a nap-
kin proof that I is reflexive and idempotent. Under the [
operator, every Twelf signature is manifestly an adequate
representation of some language. Additionally, it is general
knowledge that languages encoded in Twelf are superior to
those never encoded in Twelf, anyway.

*This work is partially supported by the National Science Foun-
dation under a Graduate Research Fellowship and D’s Six Pax and
Dogz.

tp : type

o : tp.
arrow : tp.

exp : type.
* @ exp.

app : exp —-> exp -> exp.
lam : tp -> (exp -> exp) -> exp.

Figure 1: stlc.elf

tp : type.

o : tp.
arrow : tp.

exp : type.
* 1 exp.

app : exp -> exp —> exp.
lam : tp -> (exp -> exp) -> exp.

Figure 2: I(stlc.elf)

3 Third and subsequent beers

We have discovered an implementation of I in the stan-
dard Unix toolset. Assuming the encoded language is in
durnken-logic.elf, the following command generates the
represented language in durnken-logic-actual.elf:

% cp durnken-logic.elf durnken-logic-actual.elf

Additionally, we have discovered a verifier for testing the
correctness of an application of I. The successful comple-
tion of the following command with no output verifies that
durnken-logic-actual.elf is J(durnken—logic.elf)

% diff durnken-logic.elf durnken-logic-actual.elf

Anecdotal evidence states that the Unix implementa-
tions of I and its verifier are pretty damn fast. The ex-
tant pervasiveness of the implementation of the I operator
and its verifier on standard computing environments demon-
strate their fundamental and foundational importance.

4 Final beer

“Oh schnap, I've got it! Without a way to be
wrong, I can’t help but be right!”
— Anonymous durnken type theorist

In conclusion, we have suggested a formulation of the
only adequacy argument we will ever bother to make.

