
A Record of the Proceedings
of SIGBOVIK 2012

March 30th, 2012

Carnegie Mellon University

Pittsburgh, PA 15213

ii

Association for
Computational Heresy
: :
Advancing computing as Tomfoolery & Distraction

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2011

ISSN 2155-0166

April 1, 2011

Copyright is maintained by the individual authors, though obviously this all gets posted

to the internet and stuff, because it’s 2011.

Permission to make digital or hard copies of portions of this work for personal use is

granted; permission to make digital or hard copies of portions of this work for classroom

use is also granted, but seems ill-advised. Abstracting with credit is permitted, abstracting

with credit cards seems difficult.

Additional copies of this work may be ordered from Lulu, see http://sigbovik.org/ for

details.

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2012

ISSN 2155-0166

March 30, 2012

Copyright is maintained by the individual authors, though obviously this all gets posted
to the internet and stuff, because it’s 2012.

Permission to make digital or hard copies of portions of this work for personal use is
granted; permission to make digital or hard copies of portions of this work for classroom
use is also granted, but seems ill-advised. Abstracting with credit is permitted, abstracting
with types can be used to implement existential types.

Additional copies of this work may be ordered from Lulu, see http://sigbovik.org/ for
details

ii

A preemptively lost and rediscovered message
from the organizers of SIGBOVIK 2012...

A lost and rediscovered message from the
organizers of SIGBOVIK 2010...
Durnken note frome the SIBOVIK Org committee:

Hey guys,

I love you, man! SIGBOVIK could not be so awesme without your contributios, and thats what it’s all about,
right? Woooo!

love,
Us

The Association for Computational Heresy (ACH) Special Interest Group (SIG) on Harry Q. Bovik (BOVIK) is
ecstatic to host our flagship conference, the first-ever sixth SIGBOVIK, kicking off our series of SIGBOVIK 2012
conference.

In this year’s SIGBOVIK, we hoped to return to our roots in Computational and/or Heresy, and we were
whelmed by the number of quality papers submitted this year covering one or both of these topics. These pa-
pers pioneer new interdisciplinary fields, like computational eschatology, celebrity systems, and drinking game
theory. Others provide fresh perspectives on security, logic, and patent law.

Despite the monoculture of diversity that SIGBOVIK represents, several themes emerge from this year’s confer-
ence, including: Reduction, programming, Thought, Science, and sweet. Because of visualizations, we provide a
tag cloud to illustrate these themes:

This year’s tracks have been laid down by our expert Proceedings Jockeys, and a karaoke version may be obtained
by omitting the middle two tracks. To avoid inadvertent favoritism due to the order these tracks appear, we ex-
plicitly state that the tracks have been ordered alphabetically from good to non-good.

iii

TABLE OF CONTENTS
Track 1: Official 2012 Apocalypse Track
• An Eschatological Approach: The Four Horsemen of Computer Science . 3

The Reverend Nicolas A. Feltman and Joan E. Chao, Mother Supremum

• World Domination Through the Use of a Graphical Reduction of the Six Degrees of Separation
Concept with Potential Robot Design for Mode of Implementation . 11
L. S. Berg and P. J. Barton

Track 2: Comestibility theory
• Food for Thought: Dining Philosophers . 15

• Higher-Order Generalized Algebraic Pizzas . 19
Rose Bohrer and Samir Jindel

• Lollipops and Lemma Drops: the sweet, sweet logic of candy . 23
William Lovas

• Algorithms for k/n Power-Hours . 29
Ben Blum, Dr. William Lovas, Ph.D., Chris Martens, and Dr. Tom Murphy VII, Ph.D.

Track 3: Brought to you by the letter...
• TBD . 35

Taus Brock-Nannestad and Gian Perrone

• The Letter . 37
Frederick J. Mespütchy

• Proof of P = NP . 41
Samir Jindel and Rose Bohrer

• An Epistolary Reconstruction of the Curry-Howard Correspondence . 43
Ben Blum and Michael Sullivan

• The Kardashian Kernel . 49
David F. Fouhey and Daniel Maturana

iiii

Track 4: Did you bring enough to reshare with the class?
 • Implications of Constrained Thought Expression Achieved via a One Hundred-forty Character
 Message Limitation Applied to Complex Social Netwo . 57
 Nathan Brooks and Tommy Liu

 • The Spineless Tagless Tweet Machine: Distributed Cloud-Based Social Crowdsourced Lazy Graph
 Reduction on the Web 2.0 . 59
 Michael Sullivan

 • SIGBOVIK 2012 Take-Home Midterm Examination . 61
 James McCann

 • The National Month Of Pushing Spacebar . 65
 Tom Murphy VII

 • What Most Medical Students Know About Computer Science . 75
 Brian R. Hirshman

Track 5: Programming languages research and other
games for children
 • Modeling Perceived Cuteness . 79
 Nathan Brooks and Evelyn Yarzebinski

 • i-PHONE app stor : where is my pants . 81
 Dr. Tom Murphy VII, Ph.D. and Dr. Abigale G. Lade, Ph.D.

 • An Extensible Platform for Upwards and Sidewards Mobility . 83
 David Renshaw

 • A modern optimizing compiler for a dynamically typed programming language:
 Standard ML of New Jersey (preliminary report) . 85
 Ian Zerny

 • Programming Language Checklist . 95
 Colin McMillen, Jason Reed, and Elly Jones

iiiii

Track 6: Protect yo’ shit
• Cryptographically-Strong Hashing with Physics . 101

James McCann and Fake Otherauthor

• The Physics-Based Hashes of Twelve Really Good Ideas . 105
Patent Troll

• A modest proposal for the purity of programming . 107
Robert J. Simmons and Tom Murphy VII

• Preparation-Hom as the ideal completion of a Hemorrhoidal category . 115
Sitsin CØmfort and MinrØv GØrondt

• A Randomized Commit Protocol for Adversarial - Nay, Supervillain - Workloads 119
Ben Blum

• Address space content randomization: exploit mitigation through data randomization 123
Carlo Angiuli

iiiiii

Track 1

Official 2012 Apocalypse Track

1. An Eschatological Approach: The Four Horsemen of Computer Science
The Reverend Nicolas A. Feltman and Joan E. Chao, Mother Supremum

Keywords: Eschatology, Horsies, Indulgences

2. World Domination Through the Use of a Graphical Reduction of the Six
Degrees of Separation Concept with Potential Robot Design for Mode of
Implementation
L. S. Berg and P. J. Barton

Keywords: Six Degrees of Separation, Kevin Bacon, Turtle Power, World Domination, Bad Cartoon Jokes,

Topology, Reduction, Depression, Graphical Model Abuse

1

2

An Eschatological Approach: The Four

Horsemen of Computer Science

The Reverend∗ Nicolas A. Feltman
Joan E. Chao, Mother Supremum†

March 30, 2012

1 Abstract

In this paper, we propose a novel eschatological framework for analysis of
the endtimes in computer science. Based on citations from the Subroutine
of Dijkstra, we identify and postulate the coming arrival of four horsemen:
Noise, Compatibility, Bottlenecking, and Exponential Explosion.

2 Introduction and Background

It has been well observed that Computer Science has somewhat of an un-
healthy reliance on assymptotics (having previously eschewed Mathematics’
solicitations to try amphetamines). Applying this pattern to the temporal
dimension yields the field of Eschatological Computer Science. In general,
eschatological approaches have been steadily gaining ground, mostly because
they all sound pretty cool and usually promise deliverence from the toils of
our individual problems.

Piousbottom’s seminal1 work in Eschatological Computer Science laid the
foundation for the style of analysis to be used by the rest of the field. It also
put forth The Cthulhu Hypothesis, that the endtimes will involve something

∗Ordained by the Universal Life Church Monastery.
†Currently at Our Lady of Perpetual Computation.
1It was developed at a seminary.

3

big, angry, and otherworldly. This paper supports a variant of that theory,
the Multi-Cthulhu Hypothesis, that the endtimes will involve multiple things,
each of which are medium-sized, angry, and otherworldly.

3 Methods and Texts

This paper involves analysis of the Subroutine of Dijkstra, which was origi-
nally written in ALGOL, then tranlated to COBOL, then FORTRAN, then
λ-calculus, then COBOL again, then C, then C++, then Java, and finally to
English2. The text itself was originally discovered in punch card form in the
basement of the Alamo, and thereafter adopted into cannon and canon (in
that order) by the Association for Computational Heresy3.

Figure 1: In the future, everything’s in the cloud.

2Ha et al. “MLA-style Programming,” SIGBOVIK 2011.
3a surpisingly reverent organization

4

110:10 I saw that the Lambda acquired one of the seven mutexes, and I
heard one of the four daemons saying, as with a voice of thunder,
“Come and see!”

110:20 And behold, a fuzzy white horse, and he who sat on it had a sensor.
An intricately-detailed crown was given to him, and he came forth
obfuscating, and to obfuscate.

110:30 When he acquired the second mutex, I heard the second daemon
saying, “Come!”

110:40 Another came forth, a wooden red horse. To him who sat on it was
given power to take elegance from the field, and that they should
code against one another. There was given to him a great codex of
specifications.

110:50 When he acquired the third mutex, I heard the third daemon saying,
“Come and see!” And behold, an asymmetric black horse, and he
who sat on it had a balance in his hand.

110:60 I heard a voice in the midst of the four daemons saying, “A
megabyte from disk for a millisecond, and three megabytes from
RAM for a millisecond! Don’t damage the FLOPS!”

110:70 When he acquired the fourth mutex, I heard the fourth daemon
saying, “Come and see!”

110:80 And behold, a pale horse, and he who sat on it, his name was Ex-
ponential Explosion. Hueristics followed with him. Authority over
one fourth of the field, to intractablize with the combination, with
integer optimization, with SAT, and by all the evaluation states of
the program was given to him.

4 Analysis

Above is excerpt from the Subroutine of Dijkstra, Punched Card 1102. Some
scholars argue for a literal interpretation of the text, whereas others posit
that the horsemen are symbolic references to concepts defined elsewhere. We
will employ the latter approach. The text suggests four horsemen. For the
less imaginative, graphical aids have been provided.

5

6

7

8

9

5 Simultaneous Work

Simultaneous work in Computational Ancient Poetry has given rise to a
unified Ragnarok theory involving the destruction of nearly all of modern
computer science. This is, of course, all a bunch of superstitious hokum
designed to deter you from the true path. If you’ve fallen prey to this devilish
mode of thought, consult my past work on Computational Indulgences.

10

���������	
��	�
��������������������������	����������	�
���������	�������������
�������	�
���
������	�������
�	������������	�
������������� ������
���	�

!���"�#$�$
��������
�	
��%�����&�!����
"��$'$
���������
	(���	�)�	
������
	���	�
��	������
��	�������
��
	(���	�)"������
�#	����)"������
�
��	����"�*�+�,����"�-.���/01�
2�����	����	�
�"����������3������	�)��
�4���5����!����6�����
���
��7

����	��������������
���	�
�������89"�:;8:<�%�����������������
���	�
�������89"�:;8:

%!��%�
�������������������������	�����
��)�	����������	��������������������	�
����������������	�����	�
����
�����
��(������� ��� ������ ����	
��	�
 ��) ���	�	=	
� �������������	�
 � �������� ��� ���� ��� � ���	�	��� ���	�	��" � 	
���
�� �
	
������	�
" � �
� ��	����$ �!���� ��
 � ���(�) � �����
��" ��� ���
�������� ��
 ����	�	=�� � ����� ����	�
 � ��� �������
���	
��	�
���	
�������������������	���������$�������������	�
��"����
������
�2����7"�����������������	�� �
	
�	�����	�	�)����	
6��������
�����	
������������
�����$�,������	����(���
�������������
���>���
��	���	
����� �
�
��
���������
	���	�
"� ������	
�"��
��������������?������3$

 @�-��� -@
����	��������������������	�
�	�����������������	�����������������	
������������
)����� ����������)�	
����
��
������
 �

����"��������	�������
����	�	=��������	����������	��������	�������*��	
���������
�������������������A��	
��
���$������������)�
,�	�)���B��	
��)�	
�89:9"���	����������A�	���������������	�
��������	��������������	
��
���)�����������
���������
����"�������� �
����
�	�������C��	���
	�
��)����������������
����	�	�
���	
�	(�����������������������
�����3$ 	�
�89*8"�����������	����������(���
��
��������
����	�	��������)��
����������	���������������������	���
�����3�"���
����	
�������D	
����$�$��	=����
������������������	�
"�
����	
�	(��������
���
������
�������)����
���������	
������	����$E�
���	�������������
�	�
���������
����������	�
���	����������
�

���������	
������	������
�����������������	
�	(����"�������	�����	��	
�����������	�
�	
�������������������	�	�����.�	��	�
"��������	�	��� �
�.�	��	�
�������	����A��	
��
���"����	�����"��
����������������	����A��	
��
���$ 		�

C���(��"������	���	��"������������
	������������������	�
�����������	�����)�8F4$*��	��	�
"��	���������	�����)�8��	��	�
��	(
��
������$�!������
����������������$�$���������������
���
���$�$���
����!�����"����������
���������	�
���������
	�������������� �
������	�����)����������	
������
"��	���484$:��	��	�
������
��)����	�	
��	
��������
��)$ 			�
�:;8;"�
���������������������	
������������
�$�$��	�	=�
���	(
��������"�����������	������	
�	���������
������4$F�G�H$4��	��	�
$ 	(�
����	�	�
"������������������	�
�����	
��������
�����4��	��	�
�	
�89*;����I��	��	�
�	
�:;8:$��	�����	������	(�����
���	
��������	�
"�

�������	�����������	
��	�
�����������(������
���	����)������	�������������������3	
��	
���������	������������	�
"�������������
�������������������)���������	�
���)��
�������%��	�������C�
"�������)��	����	����
�
����"��
���������	�����
��
���	��	��	��%����
����
 $�������������
����	����"���������
)���������"���������
�	�
�����������
���	���������������	
������899;�$ (�#��3	�)"��	�������������
���
���
����
��)�	�����(�
�����������	���
�����3	
�������	��"����
��)��	�����J��D�����>�������������E���
������(������
���������������� �

���D�����
)��������%���-
�����
���
��E��������$

,����
)�	
�	(��������	
������������	����)����
����������	
��	�
"������	����)����������������������
���
����
��	�
������� �
����(�
�����������������
������$�
����	�	�
������	�������"��������������������	�
����������)����������
���	�	=	
���������	����) �
�������������$�
�����������	
�������"�����	�������
��������������	����)���������������	
����	�	�
�������	�
	
������������������	
 �
���������	
��	�
$

�KC-�-#-�L
��������������������������
�	
�����(�)�����	��"�����	���	��������
�
> �!������(������(�)��
�D�����
��������
����� �

%������
��E��������������	
���������	�����������	����)�����"�������
�"��
����
�����)��
?�)���������������$��	��������������
������	
 �
���

	
���������	�	=������������	
��	�
����������	�
$

�������	
��������)��(�	�������������������	�
�����(�	
����������������������
����
��������
��������	���
�����3	
�������$�
�	���������������
�������������������������������	�	�������)��"��
���	����	
��������	�
"��
���������
	���	
A�	�	�	�
$�������
 �
������������������J����������������	�������
���3
�����������	������$����������	�������������	�
����������
�	��	������������������� �
�����
�������������
)�����������	���������"����
��	�������������������������	���$

���
��������	�
���������������������	���������"��������
�	
��������	
���������	�	=��	�
������
��	�)����������	��	������� �
�������(�)�	
�������%��	6�	���
����	��
�������������������������$�������������
����������	
��	�
����������	�
��
��������)�� �
��
������	�
���	�	=	
���������	�	=�����)�	�������������	��	�����(�)��������$

���������������������
������������������	����
��
����	���	3��������������:>4*��������3�����������)��J���M���	(�
���$

�K��#���
��� ����� -@
-������������
���	�����	�
��	�����������
�������� �!-N B�:;8:$

11

�,�	�)���B��	
��)$�DK(��)��	
��	���	M���
��@��E$�C�
���)$�89:9

���	����������(��$�D������	����������������%�A��	
��
����	�������	�
��	��E$����������������	������)����	�$ �
�������������
��	�����������
����)$���������
�����K��
��	����
�����	�����	�
��$�89*8$
������������	
	��
��
������������������������	���	�������������������	���������� ��!
"�������		��# $������

�%������&���'������(��	��)���*
��+
'"��	,���%�����)'�����	�*%��	�	����� ����(
��
����*�-�.�	�����+�/	������� �

% �������		
��0��)
$�������

%���1�� !�����2 ����3 '���� ��������4���� ��

%�-����1�%��"������
$������
	�� ��5
�	�� �"��������������		��# $�������
���	�� 	���	
���	�������

12

Track 2

Comestibility theory

1. Food for Thought: Dining Philosophers
Keywords: hunger-driven devices, morsels, monads

2. Higher-Order Generalized Algebraic Pizzas
Rose Bohrer and Samir Jindel
Keywords: Curry-Pepper Isomorphism, Grease Monad, Monoids in the Category of Delicious, A♭ Mixolydian

3. Lollipops and Lemma Drops: the sweet, sweet logic of candy
William Lovas

4. Algorithms for k/n Power-Hours
Ben Blum, Dr. William Lovas, Ph.D., Chris Martens, and Dr. Tom Murphy VII,
Ph.D.

Keywords: alcohol in computer science, algorithms for the real world, chemically-assisted reasoning, drinking

game theory, hyper-driven devices

13

14

Food for Thought: Dining Philosophers

April 1, 2012

1

Abstract

The Dining Philosophers problem is ubiquitous in concurrency theory. [1] Most approach

the problem with an all-too-transparent computer-science-biased agenda. Our work offers a

purely philosophical, hunger-driven solution.

1via http://en.wikipedia.org/wiki/File:Dining_philosophers.png

15

1 Appetizers

Siddharthachoke dip

Morel relativism

Tuna makiavelli

Jalapeno Poppers

Mock Gödel soup

Secular hunanism (hsun tzoup)

2 Mains

Fettuccini Alfrege

Vegetable Kormagorov

Bayesil pesto

Per Meat-Löf

Quineoa

Searleoin Steak

Cantortellini

Boeuf Sartre-tar

Texmexistentialism

Vennison

Tomato dalai lama

Cannelinihilism

Pressberger

Haskell Curry

3 A la Descartes

French Freuds

B. Russell sprouts

Transcuminism

Balsamic reductionism

Hipocratic oats

4 Dessert

Saul Kripkey lime pie

Neoplatonian ice cream

Fig Newtons and ChocoLeibniz [2]

16

5 Drink

Hypocratea

Gregory chai tea

Beer from L.E.J. Brouwery (served in a Wittgenstein)

Makers Marx

Three Philosophers

Appendix A: Kids’ menu

Hot dogma

Metafishsticks

Aristatertotles

Plato

Maccaronietzcheese

References

[1] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August

1978.

[2] Randofu. Everything2: Choco leibniz. "http://everything2.com/user/Randofu/

writeups/Choco+Leibniz".

17

18

Rose Bohrer

Higher-Order Generalized Algebraic Pizzas

Samir Jindel

March 5, 2012

Abstract

Herein we investigate the under-appreciated and probably undercooked

field of Higher-Order Generalized Algebraic Pizza. We provide an ele-

gant proof of the Curry-Pepper Isomorphism, show the general case of

pizza construction is undecidable, and come to groundbreaking conclu-

sions about the evaluational semantics of Dominos that lead us to propose

a different model.

1 Keywords

Curry-Pepper Isomorphism, Grease Monad, Monoids in the Category of Deli-
cious, A♭ Mixolydian

2 Motivation

One may ask why we choose to investigate the field of pizzas. In fact, many
people have asked this very question when ordering Vocelli’s late at night. There
are several convincing reasons to pursue this field of research:

1. I’m hungry.

2. Judging by how often I see the Domino’s guy at Gates, this field is of great
interest to our academic community.

3. Most research into the field so far has been by amateurs. Turning a pro-
fessional eye could bring light to currently unsolved problems.

4. I’m hungry.

3 Curry-Pepper Isomorphism

You may be aware of the Curry-Howard isomorphism relating proofs and pro-
grams. You may be less aware of the Curry-Pepper isomorphism, relating pizza
toppings to each other. The first known proof is presented below.

19

We first define the universes of pizzas and ingredients as P and I respectively,
and a garnishing function G : P × I ⇒ P. We also have the sets of curries and
peppers, C ⊂ I,P∗ ⊂ I.

We can now state the Curry-Pepper Isomorphism as follows:
Theorem 1. The Curry-Pepper Isomorphism.

∀i1, i2 ∈ C ∪ P
∗, p ∈ P, G(p, i1) = G(p, i2).

Proof. First consider the case where i1, i2 ∈ C. Observe that I’m not white and
I’m not very used to eating curry, so I can’t actually tell the difference between
the different kinds. That concludes this case.

Next consider the case i1, i2 ∈ P
∗. This case may appear complicated, be-

cause the universe P
∗ includes many types of pepper, including banana, bell,

black, and habañero. However we can apply Axiom 1: after a while, it all
tastes like cholesterol MSG and late days. That concludes this case.

Now consider the final case: i1 ∈ C ⊕ i2 ∈ C. We have already shown that
there at most two equivalence classes: curry and pepper. Thus by finding a
single curry and a single pepper that are equivalent, we can reduce this to one
equivalence class.

We now proceed by example. Consider Sgt. Pepper ∈ P
∗ and Ravi Shankar’s

Grandma’s cooking ∈ C. Because George Harrison is a Beatle he is equivalent to
Sgt. Pepper, and also equivalent to Ravi Shankar since they did the Concert for
Bangladesh together. You are what you eat, so Ravi Shankar is equivalent to his
grandma’s cooking. By transitivity of yum pun, our theorem is complete.

4 Pizza-Paper Isomorphism

To establish an isomorphism between papers and pizzas we find a mapping from
paper titles to pizzas and one from pizzas to papers. We will handle the trivial
case first:

4.1 Mapping from Paper Titles to Pizzas

Here we show that it is possible to find a mapping from paper titles that are
syntactically valid under reversal to pizzas.

Proof. To construct a pizza P from a paper title T , construct a graph G in
which the vertices V are the buzzwords B of T , and two buzzwords B1 and B2

are adjacent {B1, B2} ∈ E iff they are adjacent in the T . Next, we choose a set
of ingredients I and map each buzzword B to a set S ⊆ I of the ingredients.
We then construct the pizza P by mapping the each buzzword B to a particular
slice K such that if {Bα,Bβ} ∈ E, the slices of pizza Kα and Kβ they map to
are adjacent. We then decorate each pizza slice K with the set of ingredients S
to which its corresponding buzzword B maps.

20

4.2 Mapping from Pizzas to Paper Titles

Likewise, for any non-empty pizza, we can find a corresponding unordered pair
of paper titles that remain syntactically valid under reversal.

Proof. Assume an injection b : N → B, where every element of B is a buzzword.
As a simplification, we assume a syntax under which all titles are valid. This

reduces the problem to finding one title that corresponds to a given pizza.
First we convert our pizza to a connected, simple, weighted, undirected

graph. Each set of ingredients is represented by a vertex v, and two vertices
v1, v2 are connected by an edge e(v1, v2) iff there exist two adjacent slices s1, s2
such that s1 contains exactly the ingredients for v1 and s2 contains exactly the
ingredients for v2. The weight of the edge is the ingredient distance d(e(v1, v2)),
which is the number of ingredients you must add or remove to get from one set
to the other. Note we can treat the graph as undirected because adjacency is
symmetric and d ◦ e is commutative. Furthermore we can reduce it to a simple
graph because d depends only on v1, v2, not s1, s2 (i.e. any two edges between
a given pair of vertices would have the same weight). The graph is connected
by the obvious observation that pizzas are also connected, at least before you
eat most of them.

Given this graph, we find a title. We know the graph has at least one vertex
because the pizza was non-empty by assumption. If the graph contains one
vertex, we map it to the empty title. Otherwise, since the graph is connected
and undirected, there will exist at least one cycle. We take an arbitrary cycle
of minimal weight (there may be more than one). We then choose an arbitrary
starting vertex, and iterate through all the other vertices in the cycle. Each
time we traverse an edge e(v1, v2), we append the buzzword b(d(e(v1, v2))) to
our partial title tp. When we reach the end of the cycle we have a title t.
Because we assumed a grammar under which all titles are valid, its reverse tr is
also valid, giving us the desired pair of reversible titles (t, tr).

5 Non-Strict Semantics of Domino’s

We represent the state of Domino’s kitchen as a priority queue into which we
can enqueue functions returning pizzas (orders), and dequeue the actual pizzas
once Domino’s says they should be ready. That is, dequeueing is the action of
yelling at the pizza guy to give you your pizza, and function application is the
cooking of a pizza.

We assume Domino’s is implemented as immediately applying each order
and storing them in the queue for retrieval. This implementation has been
confirmed by the Vendor1.

Then, under a strict evaluational semantics, the pizzas should be immedi-
ately available for consumption biased by their price. Given the fact that pizzas

1
citation needed

21

take some time to execute, we cede that they might not be available imme-
diately, but it should at least be guaranteed that ordering is preserved: If I
provide a higher-order pizza, the result should be computed before computing
any lower-order pizza.

Extensive experiments have proven this assumption to be false. It is often
observed that pizzas can be evaluated immediately, way after other pizzas, or
even never because you only get cheese, you cheap bastard.

We thus conclude that Domino’s has a non-strict semantics, and is imple-
mented in Haskell (because Haskell is the only lazy language).

Furthermore, we note that CM Café has the same behavior, and this being
CMU, it should not be implemented in Haskell, but OCaSML. Not only is it
good for school PL spirit, but I would be a lot less hungry.

22

Lollipops and Lemma Drops

the sweet, sweet logic of candy

William Lovas

March 20, 2012

Abstract

Based on observations of real-world candy practice, we derive real-

math candy theory, with the hopes of spawning a decades-long research

programme into newer and tastier forms of confection. Along the way, we

cite several relevant tweets and play merry hell with BibTEX.

1 Motivation

There is a delicious children’s candy that takes the form of brightly-colored
sugar shells succulently and lovingly spray-wrapped onto highly eccentric oblate
spheroids of grade “A” dark chocolate, known in the common parlance as m&m’s.
The candies are identified by being stamped with a white letter m on one side
of the shell, primarily to distinguish them from a very similar candy that only
exists in Canada (i.e., a “canady”) called Smarties, not to be confused with the
wafer sugar confectionery made by Ce De Candy [con11]. This of course begs
the question: what happened to the other m?

We propose a logical solution to the problem, expositing a theory whereby
candymakers can save time and space by exploiting logical equivalences [LH12],
thus bridging the gap between logical theory and logical practice, with delicious
consequences. We furthermore explore a variety of future avenues where this
strategy can be fruitfully applied towards the invention of newer and tastier
candies, thus placing the entire confection industry on a sound, productive, and
logically-motivated foundation not unlike the Curry-Howard correspondence for
programming languages [How80, aPCCaeNFL12].

2 The M&M-M correspondence

Observe that logically, m&m ≡ m. This is easy to prove, whether & refers
to the ordinary “and” of classical and intuitionistic logics or the hipper and
more modern “with” of the 1980’s power-ballad linear logic. The projection-
retraction pair so-formed is typically known as the manufacturing-eating cycle,

23

and it keeps the M&M-Mars company operating lucratively.1

2.1 Correspondence. . . or more?

Many would-be academes like to bicker and argue about whether Curry-Howard
is a mere correspondence or a true isomorphism. The question of nomenclature
is both historical and technical in nature, and although its importance is unde-
niable, a full discussion of all the relevant positions and their consequences is
unfortunately outside the scope of the present work. But in keeping with the
highest standards of academic integrity commensurate with a publication venue
as prestigious as SIGBOVIK, we here evaluate our own work in this regard.

The M&M-M correspondence is a correspondence between the logical propo-
sitions M&M and M , parametric in M . For it to be a proper isomorphism, it
must be the case that the two directions of the correspondence when composed
together in either order form an identity map. The calculations are routine and
uninteresting, so we leave them to future work, but suffice it to be said that it
is difficult to manufacture a particular M&M, once eaten.

3 Whence m? And a potential new favorite

So we know by the M&M-M correspondence that M&M ≡ M , parametric in
M , and thus that m&m ≡ m. But why exploit this equivalence in the printing
of candies?

The answer is simple: to save space and manufacturing costs. Oblate
spheroids are not only pleasing to both the touch and the tongue,2 but also
quite easy to manufacture! By contrast, prolate spheroids are neither a proper
fit for the mouth—it would have to balance precariously on one end (see Fig-
ure 1)—nor for production by machine—and yet, that precarious shape would
be required to provide sufficient surface area for printing the full name of the
candy! Logical equivalence both improves aesthetic value and enables mass
production.

To a similar end, we propose a new candy—not spherical nor even spheroidi-
cal, but rectangular, and in fact, square. The complete and proper name of the
candy is A ⊃ A, but to enable manufacturability and improve the consumer
experience, the candies will simply be printed with the equivalent proposition
⊤. An added benefit not enjoyed by M&M’s is that via rotation, A ⊃ A’s may
be experienced in at least four distinct ways (see Figures 2 and 3).

1It is conjectured that the singular m found on the M&M candies actually refers to the

other m, i.e., Mars, but these rumors are mostly baseless, as M&M’s come in many colors
besides red.

2Not to mention ideally suited to the behavior of melting in the one and not in the other!

24

Figure 1: a 3&3 standing on end (image: Wikipedia; made by AugPi).

A ⊃ A

Figure 2: A ⊃ A’s: discarded concept sketch.

⊤ ⊣ ⊥ ⊢

Figure 3: A ⊃ A’s exploiting logical equivalence, in four pleasing orientations.

25

Figure 4: Would you eat that doughnut? Really?

4 Further extrusions: A classic sweet

Not all enjoyable sweets are candy: many favored confections existed before the
advent of the modern industrial era of Big Candy. One classic sweet dating back
to the mid-19th century, and popularized in modern form by such household
alliterations as Krispy Kreme and Dunkin’ Donuts, is the dough of the excluded
middle. Logically, this breakfast favorite can be represented as A ∨ ¬A, the
eponymous law, but if one attempts to print the cake’s name on the cake itself,
one finds that the name is just too short—there’s all kinds of extra space, which
is really hard on the eyes, and assuming the printing is done in frosting or
something, fully half the bites would be dry and tasteless (see Figure 4). I
mean, just look at it! It’s preposterous.

Employing logical equivalence in the opposite of the usual direction, though,
we can expand A ∨ ¬A to the well-known equivalent, the heavily left-nested
Peirce’s law : ((A ⊃ B) ⊃ A) ⊃ A. The expanded proposition now fits on the
confection in an aesthetically pleasing way, with an even distribution of frosting
throughout (see Figure 5). Succulent!

26

Figure 5: Mmm. . . heretical and higher-order.

5 Previous work

Earlier work in this area [cc, (@p] fell prey to the extraordinary fineness of
logical distinctions typified by linear logic: it was irreparably unsound, due to
the two different forms of truth in linear logic—1 and ⊤—neither of which is
actually equivalent to provable propositions. We have corrected and expanded
on the underlying idea in Section 3, above.

6 Future work

The world is full of logics, so there are many fruitful directions we envision
taking this work in the future. For instance, where did the hole go?3 What
about those lollipops?4 And can we actually employ fruit in candy?5

3Answer: constructive logic!
4Formally, ⊸ [Ph.10]
5An earlier draft of this paper was entitled, “. . . Towards Lemma Drops”, but hey, no one

ever got tenure by underselling their work. . .

27

7 Acknowledgements

Dr. Tom 7, Ph.D generously served as classical concept artist. XLNT!

References

[aPCCaeNFL12] Ben Blum as Priority Class Continuations and Michael Sulli-
van as η Normal Form Letters. An epistolary reconstruction
of the Curry-Howard correspondence. In Proceedings of the
6th Annual Intercalary Workshop about Symposium on Robot
Dance Party of Conference in Celebration of Harry Q. Bovik’s
0x40th Birthday (SIGBOVIK 2012), Pittsburgh, PA, 2012.
Association for Computational Heresy, Verlag & Sons Pub-
lishing Co.

[cc] chrisamaphone (@chrisamaphone). ““I think I’m going to start
a line of candies called A -o A’s, but just print ‘1’ on the
candy.” –@xwjl” 7 Feb 2012, 11:14 pm. Tweet.

[con11] Wikipedia contributors. Smarties (disambiguation).
Wikipedia, The Free Encyclopedia, 2011. [Online; accessed
18-March-2012].

[How80] William A. Howard. The formulae-as-types notion of construc-
tion. In Jonathan P. Seldin and J. Roger Hindley, editors, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calcu-
lus, and Formalism, pages 479–490. Academic Press, Boston,
MA, 1980.

[LH12] Daniel R. Licata and Robert Harper. Canonicity for 2-
dimensional type theory. In Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’12, pages 337–348, New York,
NY, USA, 2012. ACM.

[(@p] Popular Logic (@popularlogic). ““I think I’m going to start a
line of candies called A -o A’s, but just print ‘1’ on the candy.”
–@xwjl” 7 Feb 2012, 11:14 pm. Retweet.

[Ph.10] Dr. Tom Murphy VII Ph.D. You keep dying. In Proceedings
of the 4th Annual Intercalary Workshop about Symposium on
Robot Dance Party of Conference in Celebration of Harry Q.
Bovik’s 0x40th Birthday (SIGBOVIK 2010), Pittsburgh, PA,
2010. Association for Computational Heresy, Verlag & Sons
Publishing Co.

28

Algorithms for k/n Power-Hours

Ben Blum Dr. William Lovas, Ph.D.

Chris Martens Dr. Tom Murphy VII, Ph.D.

1 April 2012

Abstract

Drinking games, while a fun activities, can lead to
memory leaks if performed to excess. In particular
the Power Hour, in which a shot of beer is drunk
every minute for an hour, may be modified to al-
low potentially arbitrarily customizably safely enjoy-
able consumption. We sketch some known solutions
and avenues for future research. ALSO WE ARE
DRINKING RIGHT NOWAND THIS PAPERWAS
COMPLETED IN ONE HOUR

Keywords: alcohol in computer science, algorithms for

the real world, chemically-assisted reasoning, drinking

game theory, hyper-driven devices

1 Introduction

A power hour1 is a drinking game in which partici-
pants drink a shot of beer every minute for an hour,
usually based on musical cues.

Using the standard of one shot = one fluid ounce
of 4% alcohol, a power hour equals approximately
five beers total. For an average-mass human with a
well-developed alcohol tolerance, the game results in
a pleasant level of inebriation.2

-1Copyright c© 2012 the Regents of the Wikiplia Foundation.

Appears in SIGBOVIK 2012 with the permission of the Asso-

ciation for Computational Heresy; IEEEEEE! press, Verlag-

Verlag volume no. 0x40-2A. £0.00
1Not to be confused with power sets, Powerade, Powerpuff

Girls, or Mighty Morphin’ Power Rangers
2Anonymous personal correspondance

However, in some cases, the game may result in un-
comfortable levels of inebriation. Participants there-
fore may wish to reduce the total amount of alcohol
consumed while still experiencing the process of col-
laborative inebration.

If, say, a participant wants to drink half as much
as everyone else, what options do they have avail-
able? One possibility is to simply drink once ev-
ery other song. This is problematic for two reasons.
The soft reason is that in the spirit of active partic-
ipation, they would ideally like to take some action
progressing their drunkenness at every song change.
See 3 for a formal discussion of this condition. A
more compelling reason is that humans in a state of
ever-increasing inebration probably cannot remem-
ber whether or not they drank last time due to im-
paired reasoning abilities3 Therefore, they must, as
a finite state automoton, determine their course of
action based solely on current state.

A known solution for the half power hour is to take
a different action based on shot glass state: fill when
the glass is empty and drink if the glass is full. This
elegant solution achieves the goal of consuming half
as much alcohol by the end but requires the par-
ticipant only to observe the most recent state, then
change that state in a single action.

The aim of this work is to generalize the 1/2 power
hour to general k/n (with m participants).

We provide some preliminary results, but primarily
we pose a call to action suggesting various avenues of
research.

3A non-judgmental reconstruction of drunken logic. Robert

J. Simmons. SIGBOVIK 2007. April 2007.

29

2 Desiderata

3 Desiderata

There are several properties we would like an algo-
rithm to satisfy in order to be considered a proper
power hour algorithm. In this section, we enumerate
these desiderata along with illustrative examples that
violate—and thus motivate—them. Without con-
straints, the space of potential power hour algorithms
is too large to be meaningfully analyzed and under-
stood; these desiderata serve to limit the space of
possible algorithms to those that are sufficiently sim-
ple and adequate to be implemented in a real-world
context.

In what follows, a power hour player is tasked with
taking an action each turn. Typically, a turn occurs
every minute. Each action involves some observation
of the current state and some change of state. The
classic power hour algorithm is for each action to be:
observe the empty shot glass in front of you, fill that
shot glass with beer, and drink that shot glass, re-
establishing the state invariant for the next round.

3.1 Discretion

The first and most important desideratum is that of
discretion: each player should drink only one shot
per turn. Anyone who has participated in a power
hour realizes the difficulty of drinking even a single
shot late in the game, and we wish to exclude algo-
rithms that require a player to exceed these natural
human limits.

An obvious violation is the 2-power hour (=
120/60-power hour), where a player must pour and
drink two shots each turn.

3.2 Simplicity

Relatedly, a power hour algorithm should consist of
only simple actions. There is some leeway in defining
precisely what it means for an action to be “simple”,
but the purpose of this constraint is to ensure maxi-
mal physical safety and minimal broken glass (desires
which are in synergistic harmony), so for example, in-
verting a full cup is disallowed, since the spilled beer

causes a sense of alarm, and stacking a cup on an up-
cup is unpermitted (e.g., ∩

∪
), since an up-cup does

not provide sufficient foundation for safe stacking.

3.3 Locality

For practical purposes, a player participating in a
proper power hour can perform only very simple ob-

servations: to that end, we posit the desideratum of
locality : a player’s action may depend only upon ob-
serving the state of the shot glass directly in front of
them, and not, say, the state of some other player’s
glass or some written memory. This desideratum rep-
resents a kind of “memory safety”: players need not
have too much memory from turn to turn, since in
our experience, they won’t.

3.4 Singularity

Simplicity and locality together suggest the desider-
atum of singularity : a player should have at most
one shot glass in front of them at any given moment.
Generalizations are possible: for instance, every shot
glass in front of a player must have the same state
(e.g., all filled, all empty, all inverted, etc.), but the
resultant protocols become prohibitively complex due
to the explosion of possible states and the necessity
of maintaining state invariants on each action.

3.5 Liveness

Another desideratum is the property of liveness: we
would like every player to drink infinitely often, in the
limit. The goal here is to ensure that every player
continues to enjoy in the camaraderie at all times,
and to a certain extend to maintain their buzz at a
smooth and constant level. Liveness does, however,
rule out many potential interesting algorithms like
the 0/60-power hour, the 1/60-power hour, etc.

3.6 Extensibility

In addition to bounding the lower limit of a player’s
drinking (liveness, above), we would like to bound
their upper limit: the desideratum of extensibility

captures this idea. Extensibility dictates that for any

30

generalized extension of the hour to n′ > n minutes,
there must be some further extension to n′′ ≥ n′

minutes such that after n′′ minutes, a player has con-
sumed k′′ drinks such that k′′/n′′ = k/n, exactly. In
other words, in the limit, a k/n-player must always
have drunk k/n times, or be on the way to drink-
ing k/n times. Extensibility rules out algorithms like
the 58/60-power hour, the 59/60-power hour, and the
61/60-power hour, where the player has some initial
sequence of actions before they enter their main loop.

In the case of non-trivial (i.e., non-zero) power
hours, extensibilty is a strictly stronger constraint
than liveness, since for any 0 < x ≤ 1, in the limit,
a player will eventually have to drink to maintain a
fraction of x drinks per turn.

3.7 Asynchrony

In the case of distributed power hour algorithms (as
in Section 5.1 and 4), we posit the desideratum of
asynchrony : a player’s action should not depend
on any coordination with other players. Formally,
and practically speaking, asynchrony requires that a
player’s action during a turn depend only upon the
observations that player could have made at the be-
ginning of the turn. Otherwise, you know, things just
get too, uh. . . complicated.

4 Known Results

Solo arrangements. In the solo case, we know ex-
actly what power hours are possible and which are
not. Let us exhaust these before moving onto the
more difficult distributed case.

0/60 Trivial, with multiple solutions. Start
with ∪, never fill it, and never drink.

1/60 Many solutions. For example, start
with ⊎. Drink on ⊎, leave ∪upon see-
ing ∪.

2/60 Start with ⊎. On ⊎, drink and leave
∪. On ∪, fill and drink, and leave ∩.
On ∩, do nothing.

3/60 Impossible. Would require four dis-
tinct states, but there are only three.

4...19/60 Even more impossible. XXX is 19 ac-
tually impossible?

20/60 Drinking one shot out of three. Start
with ⊎. On ⊎, drink and leave ∪. On
∪, flip to ∩. On ∩, flip, fill, and leave
⊎.

21...29/60 Even more impossible. XX are 21, 29
actually impossible?

30/60 Drinking every other shot. Start with
⊎. On ⊎, drink and leave ∪. On ∪, fill
and leave ⊎.

31...39/60 Super impossible.
40/60 Drinking two shots out of three. Start

with ⊎. On ⊎, drink and leave ∪. On
∪, fill, drink, and flip to ∩. On ∩, flip,
fill, and leave ⊎.

41...57/60 Totally impossible!
58/60 Symmetric to the 2/60 case. Start with

∩. On ∩, flip and leave ∪. On ∪, fill
and leave ⊎. On ⊎, drink, fill, and
leave ⊎.

59/60 Symmetric to the 1/60 case. Start with
∪. On ∪, fill and leave ⊎. On ⊎, drink,
fill, and leave ⊎.

60/60 Easy; this is a normal power-hour.
Start with ∪. On ∪, fill, drink, and
leave ∪.

Distributed algorithms. Generalizing to the
distributed case unlocks many more possibilities.
Even for just a small number of participants, it be-
comes quite difficult to exhaustively explore the pos-
sibilities. These algorithms are a class of finite state
machines, probably excluding analytical approaches
(note that it is not even simple to count the number
of possible strategies, since some are illegal because
they put more than one cup in front of a player, per-

31

haps in a rare configuration). Here we give some
known results to give a sense of what solutions look
like.

A problem in the distributed case consists of play-
ers P1, . . . Pm. Each Pi wants to perform a ki/n power
hour for the same global n, coordinating with the
other players.

First, observe that any participant in a distributed
setting can use a solo strategy and not interact with
the rest of the group. Thus, if ki is one of the the
possible solo cases above, this player can use that
strategy if the remaining players are able to solve the
smaller distributed problem. This if course includes
the case that every player wants to perform a k/n
power hour that is one of the possible solo cases.

With two players it is possible to perform power
hours that are not possible solo, however. For exam-
ple, two simultaneous 10/60 performances are achiev-
able as follows. Only use one shotglass. Each player
does the 20/60 strategy, transitioning ∩ to ∪, and ∪

to ⊎. A player receiving ⊎ drinks and transitions to
∩. In each case, the single shotglass is passed to the
other player, cutting the normal 20/60 in half by split-
ting it evenly. ∩ to ∪ and place it in front of the other
player. This is the power of teamwork!!

More complex arrangements are possible, like
where you pass to a different dude depending on what
orientation the cup is in, and who knows what hap-
pens?!

5 Future Work

5.1 Distributed Algorithms

In future research we plan to study distributed algo-
rithms involving more than one person and/or more
than one shot-glass. With multiple people cooper-
ating during one power hour, we observe many ad-
ditional possibilities for tracking the state. Assume
that instead of 1 participant with one shot-glass, we
have p participants with q shot-glasses among them.

5.1.1 Rotation

5.1.2 Shotglass Interactions

There are also many combinations that may result
if we allow for a state to be represented by multiple
(presumed indistinguishable) shotglasses. As a basic
example, using two empty shotglasses, we can repre-
sent three states: ∪∪, and ∪∩, and ∩∩.

If we allow filling one or both of the cups in the
former two states, this allows for even more states,
but with less possibilities to transition between states
without drinking.

If we allow stacking of shotglasses, we enable even

more states:
∪
∪,

∪
∩,

∩
∪, and

∩
∩. In total, this allows for

seven states with two shotglasses.
This can be extended to arbitrarily high stacks,

with absurd consequences. We plan to hire a set the-
orist to study the interactions of countably infinite
and possibly even uncountably infinite stacks.

5.2 Controversy

As discussed in section 3, there are several constraints
on the legitimacy of power hour algorithms. In the
future we will consider potential algorithms that may
result if we relax these constraints.

5.2.1 Multiple Shots per Minute

If we extend the set of possible state transitions to
allow the participant to drink multiple times per
minute, we enable algorithms in which k > n. We
write (A, . . .Z)m to denote performing the actions A
through Z in sequence m times repeated.

The most basic example is to extend the classic
algorithm to enable a m ∗ n power hour, as follows.
On each tick, (fill, drink)m, and leave ∪.
We can also write algorithms for non-integral irreg-

ular fractional power hours. For a m/3 power hour
(with m ≥ 1): If ∩, flip and leave ∪. If ∪, fill and
leave ⊎. If ⊎, drink, (fill, drink)m−1, flip, leave ∩.
However, the algorithm described above provides

poor load-balancing in the case of large m. We
can solve this problem by distributing the multiple-
drinks, as follows. (In the following description,
we assume m ∼= 1mod3, for simplicity.) If ∩,

32

flip, (fill, drink)(m−1)/3 and leave ∪. If ∪, fill,
(drink, fill)(m−1)/3 and leave ⊎. If ⊎, drink, (fill,
drink)(m−1)/3, flip, leave ∩.
We postulate that a similar load-balancing algo-

rithm can be applied to any existing conventional al-
gorithm for k ≤ n.

5.2.2 Non-Extensibility

As discussed in section 4, there are certain algorithms
that provide results for k additively dependent on n.
The possibilities for these are also greatly expanded
given the techniques described above. One example
algorithm is shown below.

If ∩∩, stack and leave
∩
∩. If

∩
∩, flip the top cup and

leave
∪
∩. If

∪
∩, flip both cups and leave

∩
∪. If

∩
∪, flip

the top cup and leave
∪
∪. If

∪
∪, un-stack and leave ∪∪.

If ∪∪, fill both glasses and drink, leaving ∪∪.
With one participant using two cups, this causes

a 110/60 power hour. With two participants, one
drinking from each cup in the final step, this causes
a 55/60 power hour.

6 Conclusion

We have presented some algorithms for k/n Power
Hours, woohoo!

We wrote this paper in one hour while drinking
beer.

7 Cheers

Cheers to Rob Simmons for spreading the knowledge
of the original Half Power Hour formulation; to Jamie
Morgenstern, Rob Arnold, and Anders “POWAH
HOWAH” Schack-Nielsen for providing inspiration in
the form of Power Hour Participation; to Ali Spag-
nola for providing musical accompaniment to our
writing sprint.

33

34

Track 3

Brought to you by the letter. . .

1. TBD

Taus Brock-Nannestad and Gian Perrone
Keywords: all is well here, send money, love to you and yours

2. The Letter
Frederick J. Mespütchy

3. Proof of P = NP
Samir Jindel and Rose Bohrer

4. An Epistolary Reconstruction of the Curry-Howard Correspondence
Ben Blum and Michael Sullivan
Keywords: Corre-Howard-Spondence, Simply Typed Lambada Calculus, Supernatural Deduction

5. The Kardashian Kernel
David F. Fouhey and Daniel Maturana
Keywords: Kardashian, Kim, Kourtney, Khloe, Kernel, Kuadratic, Konvex, Koncave, Krylov, Kronecker,
Kolmogorov, Karush-Kuhn-Tucker, K-Means, K-Armed-Bandit, Kohonen, Karhunen-Loeve, Kriging, Kalman,
Kinect, Kovariance, Kurse-of-dimensionality, Kurvature, K-Nearest-Neighbor

35

36

The Letter

Frederick J. Mespütchy

CarnegieMellonTrump University

Hitler College of Barely Understandable Scientific... Stuff∗

Bieber Hall, 1001110001000 Forbius Avenue, Pittsblerg

(*FYI: not that Hitler - his third clone was actually quite a nice guy)

Dear past future PhDs,

First, I would like to apologize to the unfortunate“victim”

of this communication. Indeed, in order to ensure my sub-

mission was properly noticed (and hopefully submitted in a

timely manner) to your deeply respected conference, I was

forced to overwrite the most frequently accessed file in your

Programme Chair’s hard drive. It is my honest and sincer-

est wish for this inconvenience to be merely temporary, as I

hope a complete and fully restoration of said file is possible

so as he/she may continue to enjoy the unquestionable value

of the content contained in “Jane really loves horses -

stretched sore holes - part 2.flv”.

With that, I will now take the time to briefly describe how

I am reaching you. Although time-traveling is now techni-

cally possible, the energy requirements for sending informa-

tion back in time grow exponentially in the size of the mes-

sage and the distance in time. Furthermore, the operation

changes the state of the carrier medium at that particular

point in time. Consequently, we are limited to relaying this

message by changing the magnetic properties of your PC’s

hard drive, we cannot create completely “new” and complex

matter. Thus, although very experimental and not fully reli-

able, this message should have appeared in a quite noticeable

location so as to be detected on time for the conference.

In case you are wondering as to why your hard drive was

selected, well it has important historic value. However, you

do not need to worry, for this procedure will cause no harm

to it and, in fact, it will be returned this very same after-

noon to the museum where your Facebook profile is on per-

manent display to educate today’s people on how pathetic

and meaningless your lives actually were.

The whole process of time-traveling is somewhat complex

(and slightly itchy, with byproducts that may cause halluci-

nation and silly behavior) and I will have to elide the details

for sake of brevity, you can see the companion Technical

Report[1] if you are curious about it. Interestingly, that re-

search spawned a very insightful observation that, just like

the human brain can only comprehend a single instant in

time it has also evolved to only perceive a single position

and ignore all the other superpositions of quantum states in

a similar way that our eyes cannot see other wavelengths of

light - but completely different, obviously. The mechanisms

of evolution and natural selection pushed the development of

brains that are adequate to observe a single quantum state at

a time, even though all other possibilities continue to exist,

these are shadows of the same object in dimensions that we

lack a proper perception mechanism to comprehend simulta-

neously. Thus, the whole operation is more in changing our

view of the present than your past - but calling it “quantum

superposition re-collapse traveling” is probably inaccurate,

imprecise, vague and apparently redundant.

Besides such obviously groundbreaking and history result,

the real purpose of this message is to further guide your

research paths by giving you a glimpse of today’s society.

Thus, contributing to the ever increasing pride and prestige

of our institution by advising you on what advancements

had true meaningful impact.

Similarly, perhaps the best glimpse of excitement I can

give you about the future is that we have reached such an

advanced state of reasonably compromise and educated dis-

cussions that even the most complex issues, such as abor-

tion, have finally been solved. Thus, it is legal to technically

do an abortion although the “aborted” embrions continue

their development in an in-vitro womb. Furthermore, to

ensure a proper up-bringing of these family-less individu-

als, they then automatically join the military and enlist in

the famous 1st Single Victory Squad, America’s first suicide

squad. As you can see such compromise has not only com-

pletely solved the issue once and for all, while pleasing both

sides of the argument, and it was also responsible to create

a group of people that played a crucial role in finally ending

world hunger.

In, somewhat, unrelated news cannibalism is now socially

acceptable.

Odd events have occurred since your time. For instance,

the full size recreation of the Schrödinger’s cat experiment

resulted in a surprising outcome. Indeed, the cat was neither

alive nor dead, but zombified. However, unlike what is por-

trayed in movies, zombies are surprisingly not all that harm-

ful as rotting flesh has trouble keeping usable teeth. Thus,

the subsequent zombie invasion produced very few but still

very boring and excessively drooly deaths and some embar-

rassingly disturbing sexual behaviors that make necrophilia

look like banging a dead corpse. Well, except in Britain.

Apparently bad teeth were no impediment for British zom-

bies. Indeed, the NHS is truly universal and the up-surge

in sales of prosthetic teeth more than compensated for the

economical impact of the whole zombie situation. But I di-

gress...

Video games have long became the norm for both educa-

tion, art and recreation. Although, if our calculations are

correct, you should be experiencing the Kinect controller

37

38

tomatically computes an adequate temperature to keep the

water pleasantly cozy. Buttons, such as for elevators, are all

proximity based which considerably reduces transmission of

diseases although door kno 2

γ
f̂or what?? Really? Pff... if I were

the last guy on the planet I could definitely do better than you.
And besides, if everyone else is dead it just means you are defi-
nitely carrying some really deadly and contagious disease down
there that is surely the cause of their demise. Yes, am very
subtly calling you a whore. I know. This news is surely going
to come as a shock to your mother. She really dislikes having
competition. And I am not even *remotely* surprised that you
would refuse me even if I were the last guy on the planet. After
all, such constraint simply does not significantly reduce your
domain of possible sexual partners. Now, if you had said that
you would turn me down even if there were no dogs, no cats, no
horses, no elephants, no snakes, no rats/mice, no anacondas,
no llamas, no donkeys, no monkeys, no gorillas, no fishes of
any kind, no cucumber or similarly shaped fruits or vegetables,
no brooms, no fire extinguishers, no Eiffel tower, no trains, no
bicycle seats, no at least partially stiff corpses, no plungers,
no rockets, no door knobs, no gear sticks o4#̀own for singing

“Shitting in America” to the tune of a Lady Gaga song while

locked in a bathroom stall with no shoes (nor socks). Per-

haps he is just weird, or the story is fiction, or he is just

someone with a very unhealthy addiction. But I do request

that you do try to find the person who wrote:

Here I am relaxed and seated,

With my ass carefully fitted

In this ceramic dome, unheated.

Ass cheeks spread and sweated,

Waiting a discharge, long pleaded.

I now reflect on what I did and see,

plants that spend more time in school than me,

but get less than a nod, not even a "Hi!"

sometimes slapped by that girl with big... eyes.

A billion "Hey!"-friends too polite to ignore,

names I forgot, people I do not wish to bore.

Stairways with suspicious smells

Who knows what below them dwells...

Stall-mates with impressively sounding excretions,

That saturate my nasal cavity to completion

Our coordinated farts as an odd way of communication

Between separate and distant anal civilizations

If only our hands could join in respectful consolation

Perhaps such friendly touch could cure my constipation.

Since the bastard’s bowel movement caused an unprece-

dented and significant loss to the university both from cost

of toilet paper as well as clogged pipes in the whole GHC

complex. We don’t even know how he managed to do that.

We suspect it was either a very funny prank or just a pa-

thetically sad health condition mixed with unusual bad luck

and a poor/careless flushing discipline.

The adoption of the metric system was a catastrophe.

Although not in any scientific or technical way, just so-

cially. The transition from inches to centimeters had the

unexpected consequence of boosting the self-esteem of every

“hopefully-at-least-average” man, artificially pushing them

into the domain of “slightly-above-average-but-nothing-too-

impressive” league which lead to several outbreaks of point-

less violence, mostly with baseball bats, and some less point-

less ones, with acutely sharp knifes an⊎}2(/ccidental fart
that would give flashbacks to any holocaust survivor, the
interview just went downhill. Somehow I just knew the fart
incident would not be forgotten. After that my mind just...
well, this is what I remember of the rest of the conversation:
“And where do you see yourself in 5 years?”
“In the future.”
“Ok, then lets go to a different kind of question. Why are
manhole covers typically round?”
“They were designed to be squared, but they had to cut a
few corners during implementation.”
“How many ping-pong balls fit in a bus?”
“Exactly 3. Now, I know what you’re thinking. You’re prob-
ably wondering: What kind of bus can only fit 3 ping-pong
balls? The answer is surprisingly simple: not a very big
one.”
And as the smell of harshly digested Subway food still lin-
gered on everyone’s noses and my underwear carried a very
suspicious and even more inauspicious moisty feeling I began
to+;δ23@W NO-CARRIER

39

40

Proof of P = NP

Samir Jindel and Rose Bohrer

March 4, 2012

Abstract

We have made a revolutionary discovery that will forever change the
field of computer sicence. The finest mathematicians and brightest scien-
tists of mankind have toiled away at this problem for decades, but until
now no progress has been made toward its resolution. Our solution and
proof to this problem bring volumes of new insight to complexity theory.
Never has mankind stumbled upon such an elegant proof to such a chal-
lenging and motivated problem before. We have dedicated years upon
years of research to this topic, are simply standing upon the shoulders of
giants as we present to you our asounding discovery: P = NP.

41

Let N = 1. Thus P = 1 · P = NP . Quod erat demonstrandum, bitches.

42

❆♥ ❊♣✐st♦❧❛r② ❘❡❝♦♥str✉❝t✐♦♥ ♦❢ t❤❡ ❈✉rr②✲❍♦✇❛r❞

❈♦rr❡s♣♦♥❞❡♥❝❡

❙t❛rr✐♥❣
❇❡♥ ❇❧✉♠ ✭❜❜❧✉♠❅❛♥❞r❡✇✳❝♠✉✳❡❞✉✮ ❛s Pr✐♦r✐t② ❈❧❛ss ❈♦♥t✐♥✉❛t✐♦♥s

❛♥❞
▼✐❝❤❛❡❧ ❙✉❧❧✐✈❛♥ ✭♠❥s✉❧❧✐✈❅❛♥❞r❡✇✳❝♠✉✳❡❞✉✮ ❛s η✲◆♦r♠❛❧ ❋♦r♠ ▲❡tt❡rs

✷✵✶✶✳✵✹✳✵✶

❆❜str❛❝t

❚❤❡ ❧♦❣✐❝✐❛♥s ❍❛s❦❡❧❧ ❈✉rr② ❛♥❞ ❲✐❧❧✐❛♠ ❆❧✈✐♥ ❍♦✇❛r❞ ❤❛✈❡ ❡❛❝❤ ❝♦♥tr✐❜✉t❡❞ ♥✉♠❡r♦✉s ✐♥✈❛❧✉❛❜❧❡
✐❞❡❛s t♦ t❤❡ ✜❡❧❞s ♦❢ ♣r♦♦❢ t❤❡♦r② ❛♥❞ ♣r♦❣r❛♠♠✐♥❣ t❤❡♦r②✱ ✐♥❝❧✉❞✐♥❣ t❤❡ ❢❛♠♦✉s ✐s♦♠♦r♣❤✐s♠ ❜❡t✇❡❡♥
♣r♦♦❢s ❛♥❞ ♣r♦❣r❛♠s✳ ❘❡❝❡♥t r❡s❡❛r❝❤✱ ❤♦✇❡✈❡r✱ ❤❛s ✉♥❝♦✈❡r❡❞ ❛ ❝❡rt❛✐♥ ❝♦rr❡s♣♦♥❞❡♥❝❡ ❜❡t✇❡❡♥ t❤❡
t✇♦ ❣❡♥t❧❡♠❡♥ t❤❛t ❝♦♥tr✐❜✉t❡❞ t♦ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ t❤❡ ❢❛♠♦✉s ❈✉rr②✲❍♦✇❛r❞ t❤❡♦r②✳ ❲❡ ♣r❡s❡♥t t❤❡
❝♦rr❡s♣♦♥❞❡♥❝❡ ❤❡r❡ ✐♥ ❢✉❧❧ ✐♥ ✐ts ♦r✐❣✐♥❛❧ ❢♦r♠❛t✳

❑❡②✇♦r❞s✿ ❈♦rr❡✲❍♦✇❛r❞✲❙♣♦♥❞❡♥❝❡✱ ❙✐♠♣❧② ❚②♣❡❞ ▲❛♠❜❛❞❛ ❈❛❧❝✉❧✉s✱ ❙✉♣❡r♥❛t✉r❛❧ ❉❡❞✉❝t✐♦♥

✶ ■♥tr♦❞✉❝t✐♦♥

My Dearest Mr. Curry,

It is a pleasure to meet you. I am a resear�er at the University of �icago, and
I have been studying natural deduction and the λ-calculus. I am writing you because
it seems there is a relationship between the two subjects not unlike the one between
combinators and axiom s�emes that you recently published on.

To briefly explain the relationship, for example, in the λ-calculus, the construc-
tion of a function is similar to the introduction of an implication in a natural deduction
proof, and the application of function to an argument mat�es up with the modus ponens
rule.
If you wish to correspond with me on this matter, I would like to hear more about
your resear� about combinator calculi.

With warm regards,
William Alvin Howard

❋✐❣✉r❡ ✶✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ❆♣r ✶✱ ✶✾✹✻

43

✷ ❘❡❧❛t❡❞ ❲♦r❦

❤✐ ❛❧✈✐♥✱

❣♦♦❞ t♦ ❤❡❛r ❢r♦♠ ②♦✉ ✲✲ ②♦✉ ❤❛✈❡ s♦♠❡

✐♥tr✐❣✉✐♥❣ ✐❞❡❛s✦ ❧❡t ♠❡ r❡❧❛t❡ s♦♠❡ ♦❢

♠② ✇♦r❦ t♦ ❣✐✈❡ ②♦✉ ❛♥ ✐❞❡❛ ♦❢ ❤♦✇ ✐t

❛❧❧ ♠✐❣❤t ❢✐t t♦❣❡t❤❡r✳

✐✈❡ ❜❡❡♥ ❢♦❝✉s✐♥❣ ♦♥ t❤❡ s✐♠✐❧❛r✐t✐❡s

❜❡t✇❡❡♥ ❤✐❧❜❡rt ❧♦❣✐❝ ❛♥❞ ❝♦♠❜✐♥❛t♦r

❝❛❧❝✉❧✉s✳ t❤❡ t❤✐♥❣ ❛❜♦✉t ❤✐❧❜❡rt✲st②❧❡

s②st❡♠s ✐s t❤❛t t❤❡② ❛r❡ ❧♦❣✐❝❛❧ s②st❡♠s

t❤❛t ♣✉s❤ ❛s ♠✉❝❤ ♦❢ t❤❡ s②st❡♠ ✐♥t♦ ❛♥

❛①✐♦♠ s❡t ❛s ♣♦ss✐❜❧❡✱ ✇❤✐❧❡ ♠✐♥✐♠✐③✐♥❣

t❤❡ ♥✉♠❜❡r ♦❢ r✉❧❡s ♦❢ ✐♥❢❡r❡♥❝❡✳ s♦ ❢♦r

♣r♦♣♦s✐t✐♦♥❛❧ ❧♦❣✐❝✱ t❤❡ ♦♥❧② ✐♥❢❡r❡♥❝❡

r✉❧❡ ✇♦✉❧❞ ❜❡ ♠♦❞✉s ♣♦♥❡♥s✳

t❤✐s ❝♦rr❡s♣♦♥❞s t♦ ❛ ♣r♦❣r❛♠♠✐♥❣ ♠♦❞❡❧

✇✐t❤ ♥♦ s②♥t❛t✐❝ ❢♦r♠s ♦t❤❡r t❤❛♥

❢✉♥❝t✐♦♥ ❛♣♣❧✐❝❛t✐♦♥ ❛♥❞ s♦♠❡ s❡t ♦❢

❜❛s❡ ❝♦♥str✉❝t♦rs ✭t❤❡ ❝♦♠❜✐♥❛t♦rs✱ ❛s

②♦✉ ❦♥♦✇ ✲✲ ❙✱ ❑✱ ■✮✳ ♥♦t❛❜❧②✱ ✐t

❞♦❡s♥✬t ❤❛✈❡ ✈❛r✐❛❜❧❡ ❜✐♥❞✐♥❣✳

❤♦♣❡❢✉❧❧② t❤✐s ❤❛s ❜❡❡♥ ❤❡❧♣❢✉❧✳ ❧❡t ♠❡

❦♥♦✇ ✐❢ ②♦✉ ♣❧❛♥ t♦ ♣✉❜❧✐s❤ ❛♥② ♦❢ ②♦✉r

✐❞❡❛s✱ ✐❞ ❜❡ ❣❧❛❞ t♦ t❛❦❡ ❛ ❧♦♦❦ ❛t ❛

❞r❛❢t ❢♦r ②♦✉✳

❝❤❡❡rs✱

❤❛s❦❡❧❧ ❝✉rr②

❋✐❣✉r❡ ✷✿ ▲❡tt❡r ❢r♦♠ ❈✉rr②❀ ❏✉❧ ✼✱ ✶✽✸✶

✸ ❉✐s❝✉ss✐♦♥

Greetings, Mr. Curry!

Thank you for the overview; I have found it immensely useful.

I have done some further work on my idea, and it seems that with my new way
of looking at it, the idea behind natural deduction is that connectives are defined just in
terms of introduction and elimination forms; not by relating connectives to ea� other.

It also seems that evaluation of λ-terms corresponds to reduction of proofs. A
reduced proof is one with no “detours”, if you will, that is to say, the introduction of a
connective that is then eliminated. This turns out to mat� up perfectly with β-reduction.

I would love to hear what you think of this.

44

Best Wishes,
William A. Howard

❋✐❣✉r❡ ✸✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ▼❛② ✶✼✱ ✶✽✸✼

❤❡② ❛❧✈✐♥

t❤✐s ✐s ♠♦st ✐♥t❡r❡st✐♥❣✳ ✐ ✇♦♥❞❡r✱ ✇❤❛t

♠✐❣❤t t❤❡ ✐♠♣❧✐❝❛t✐♦♥s ❜❡ ✐♥ t❤❡ ❛r❡❛ ♦❢

❝❧❛ss✐❝❛❧ ❧♦❣✐❝❄ ✐ ❤❛✈❡♥t ②❡t ❜❡❡♥ ❛❜❧❡

t♦ ❢✐❣✉r❡ ♦✉t ❤♦✇ ♣r♦♦❢ ❜② ❝♦♥tr❛❞✐❝t✐♦♥

❢✐ts ✐♥ ✇✐t❤ ♠② ❝♦♠❜✐♥❛t♦rs✳ ✐t s❡❡♠s

❧✐❦❡ ✐t ✇♦✉❧❞ ❜❡ ✉♣ ②♦✉r ❛❧❧❡② t❤♦✉❣❤❄

❛s ❢♦r ♠❡✱ ✐ ❤❛✈❡ ❞✐s❝♦✈❡r❡❞ t❤❛t t❤❡r❡

❛r❡ ❛❧s♦ tr❛♥s❧❛t✐♦♥s ❜❡t✇❡❡♥ t❤❡ ❧❛♠❜❞❛

❝❛❧❝✉❧✉s ❛♥❞ t❤❡ s✴❦ ❝❛❧❝✉❧✉s✱ ♠✉❝❤ ❧✐❦❡

t❤❡ ✐s♦♠♦r♣❤✐s♠ ❜❡t✇❡❡♥ ❤✐❧❜❡rt ♣r♦♦❢s

❛♥❞ ♥❛t✉r❛❧ ❞❡❞✉❝t✐♦♥ ♣r♦♦❢s✳

✲✲ ❤❛s❦❡❧❧

❋✐❣✉r❡ ✹✿ ▲❡tt❡r ❢r♦♠ ❈✉rr②❀ ◆♦✈ ✶✼✱ ✶✾✽✽

Mr. Curry,

I have made an exciting discovery. It seems as though the “continuation-passing
style” invented by Sussman and Steele in 1975 is directly isomorphic to the double-nega-
tion translation from classical logic to intuitionistic logic. You may be particularly
interested to note one part of this discovery, whi� is that Pierce’s law of logic mat�es
the ”call/cc” primitive.

I have written a paper to announce this isomorphism, and intend to submit it to
the upcoming SigBovik conference. I have also included a draft of the paper in this
envelope, and I would be greatly obliged if you could take the time to review it.

With Mu� Gratitude,
William Howard

❋✐❣✉r❡ ✺✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ▼❛r ✶✷✱ ✶✾✺✺

45

❋✐❣✉r❡ ✻✿ ❍♦✇❛r❞✬s ♣❛♣❡r ♦♥ ❈P❙ ❝♦♥✈❡rs✐♦♥✱ r❡❥❡❝t❡❞ ❢♦r ❧❛❝❦ ♦❢ ❝✐t❛t✐♦♥s t♦ ❢♦r♠❡r ✇♦r❦✳❬❇❧✉✶✵✱ ❘❡♥✶✵❪

Haskell,

Did you see my last letter, about the continuation passing style? Please respond; the
conference deadline is quite soon.

Thanks. . .
Will H.

❋✐❣✉r❡ ✼✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ▼❛r ✶✽✱ ✶✾✺✺

46

❙❖❘❘❨ ❆▲❱■◆ ❙❚❖P ■ ❍❆❱❊ ❇❊❊◆ ❖◆ ❱❆❈❆❚■❖◆ ❆◆❉ ❈❆◆◆❖❚ ❘❊❆❉ ❨❖❯❘ ❉❘❆❋❚ ❙❚❖P ❨❖❯

❙❍❖❯▲❉ ❙❯❇▼■❚ ❲■❚❍❖❯❚ ▼❨ ❘❊❱■❊❲ ❙❚❖P

❍❈ ❙❚❖P

❙❊◆❚ ❋❘❖▼ ▼❨ ❈◆❈P ❚❊▲❊❈❖▼▼❯◆■❈❆❚■❖◆❙ ❚❊▲❊●❘❆P❍ ❙❚❖P

❋✐❣✉r❡ ✽✿ ❚❡❧❡❣r❛♠ ❢r♦♠ ❈✉rr②❀ ▼❛r ✶✾✱ ✶✾✺✺

✹ ❊✈❛❧✉❛t✐♦♥

e1 7→ λx.e
′

1 e2 7→ e
′

2

e1e2 7→ [e′2/x]e
′

1

✺ ❈♦♥❝❧✉s✐♦♥

Hi Mr. Curry,

It turns out that SigBovik did not accept my paper - the reviewers said some-
thing about another paper that was recently published on “DPS Conversion” that I
neglected to cite in my submission.

I plan to continue developing this idea, and submit it to the Journal of Univer-
sal Rejection, whose deadline is upcoming next month.

I remain, Sir, your most Humble and Obedient Svt.,
William A. Howard

❋✐❣✉r❡ ✾✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ❆♣r ✶✱ ✶✾✺✺

❛❧✈✐♥✱

s♦rr② t♦ ❤❡❛r s✐❣❜♦✈✐❦ ❞✐❞♥t ❛♣♣r❡❝✐❛t❡

②♦✉r ❞✐s❝♦✈❡r②✳ ❤♦♣❡❢✉❧❧② ②♦✉❧❧ ♠❡❡t

✇✐t❤ ♠♦r❡ ❧✉❝❦ ✐♥ ❢✉t✉r❡ s✉❜♠✐ss✐♦♥s✳

✐ ✇❛s t❤✐♥❦✐♥❣ ❛❜♦✉t s❡q✉❡♥t ❝❛❧❝✉❧✉s

t❤❡ ♦t❤❡r ❞❛②✱ ❛♥❞ ✐t ❛❧s♦ ♠✐❣❤t ❤❛✈❡

s♦♠❡ ♣❧❛❝❡ ✐♥ ②♦✉r r❡s❡❛r❝❤✳ ❢♦r ❡①❛♠♣❧❡

❝✉t ❡❧✐♠✐♥❛t✐♦♥ ❛♣♣❡❛rs t♦ r❡♣r❡s❡♥t ❛♥

❛❜str❛❝t ♠❛❝❤✐♥❡ ❝♦♠♣✉t❛t✐♦♥✳ ✐ s✉s♣❡❝t

❝❛❧❧✲❜②✲♥❛♠❡ ❛♥❞ ❝❛❧❧✲❜②✲✈❛❧✉❡ s❡♠❛♥t✐❝s

♣❧❛② ✐♥t♦ ✐t t♦♦✳

✲❤

❋✐❣✉r❡ ✶✵✿ ▲❡tt❡r ❢r♦♠ ❍♦✇❛r❞❀ ❆♣r ✷✱ ✶✾✺✹

47

❘❡❢❡r❡♥❝❡s

❬❇❧✉✶✵❪ ❇❡♥ ❇❧✉♠✳ ❉P❙ ❝♦♥✈❡rs✐♦♥✿ ❆ ♥❡✇ ♣❛r❛❞✐❣♠ ✐♥ ❤✐❣❤❡r✲♦r❞❡r ❝♦♠♣✐❧❛t✐♦♥✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢

t❤❡ ✹t❤ ❆♥♥✉❛❧ ■♥t❡r❝❛❧❛r② ❲♦r❦s❤♦♣ ❛❜♦✉t ❈♦♥❢❡r❡♥❝❡ ✐♥ ❈❡❧❡❜r❛t✐♦♥ ♦❢ ❍❛rr② ◗✳ ❇♦✈✐❦✬s 26t❤
❇✐rt❤❞❛②✱ ❙■●❇❖❱■❑✱ ✷✵✶✵✳

❬❘❡♥✶✵❪ ❉❛✈✐❞ ❘❡♥s❤❛✇✳ ❚❤❡ ❈❤✉r❝❤✲▼♦♥❦ ■s♦♠♦r♣❤✐s♠✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✹t❤ ❙②♠♣♦s✐✉♠ ♦♥ ❘♦❜♦t

❉❛♥❝❡ P❛rt② ♦❢ ❈♦♥❢❡r❡♥❝❡ ✐♥ ❈❡❧❡❜r❛t✐♦♥ ♦❢ ❍❛rr② ◗✳ ❇♦✈✐❦✬s 26t❤ ❇✐rt❤❞❛②✱ ❙■●❇❖❱■❑✱ ✷✵✶✵✳

48

49

1 The Kardashian Kernel

Let X be an instance space. The Kardashian Kernel is an inner product operator KK :
X × X → R. Applying the Kernel trick [14] we express it as KK(x, x′) = κ(x)Tκ(x),
with κ : X → K. Here K represents a possibly infinitely-dimensional feature space. In
Fig. 1, we provide the best (to our knowledge) motivation of the Kernel Trick: by using
the Kardashian Kernel, we can leverage the Kardashian Feature space without suffering
the Kurse of Dimensionality. This kurse is similar in nature to the better-known Curse
of Dimensionality (c.f., [3]); however, the motivation for avoiding such a space is different:
here, we wish to avoid having our data be associated with the Kardashian shenanigans1.

1.1 Related Work

It is common in the literature to cite work that is thematically related; here, we explore an
totally better style, in which we cite work that is alphabetically related.

Historically, we are of course motivated by the Kronecker product and delta, and by the
fundamental impact had by Andrey Kolmogorov on probability theory. In more recent work,
our work is motivated by Kalman Filters [9], especially in application to active stereo sensors
such as Kinect or circular distributions such as the Kent distribution. We are also inspired
by the ingenuity of David Lowe in using an modified K-d tree search ordering to perform
fast keypoint retrieval in computer vision [11]; however, we believe that our approach is
provably k-optimal, as our paper has significantly more k’s and substantially more pictures
of the Kardashians. We feel that it is important to note that several machine learning
techniques are in fact, special cases of our k-themed approach: Gaussian process regression
also known as Kriging [12], and Self-Organizing Maps [10] are also known as Kohonen maps,
and thus both are of interest; in contrast to this work, however, we place our k’s up-front
systematically rather than hide them in complex formulations and semantics.

1.2 On Some Issues Raised by the Kardashian Kernel

1.2.1 On Reproducing Kardashian Kernels

A natural question is, does KK define a Reproducing Kernel Hilbert Space (RKHS)? In
other words, are the Kardashians Reproducing Kernels? We conjecture that it may be the
case: see Fig. 2, as well as [16] and [13]. Nonetheless this has only been proven for a special
case, Kourtney [5].

Figure 2: Are the Kardashians Reproducing Kernels? So far this conjecture has only been
proven in the case of Kourtney (left figure), but many authors have argued that figures such
as (right) may suggest it is also true for Kim.

1We thank the anonymous reviewer at People for correcting an error which occurred in the
previous version: Kris Humphries is no longer considered a member of the Kardashian feature
space.

50

1.2.2 On Divergence Functionals

Our paper naturally raises a number of questions. Most importantly of all, one must ask
whether the space induced by κ has structure that is advantageous to minimizing the f -
divergences (e.g., see [15])? We provide a brief analysis and proof sketch. Note that

Dφ(Z,Q) =

∫
p0φ(q0/p0)dµ

with φ convex. The following result follows fairly straight-forwardly from the standard
definitions:

min
w

=
1

n

n∑
i=1

〈w, κ(xi)〉 −
1

n

n∑
j=1

log〈w, κ(yj)〉+
λn

2
||w||2K

A complete proof is omitted due to space considerations, but should be fairly straight-
forward for even an advanced undergraduate; it is made much easier by the use of the
Jensen-Jenner Inequality [8].

2 Kardashian SVM

2.1 Problem setting

SVMs are very popular, and provide a great way to plug in our new kernel and demonstrate
the importance of being Kardashian [18]. We propose to solve the following optimization
problem, which is subject to the Kardashian-Karush-Kuhn-Tucker (KKKT) Conditions2

min
w,ξ,b

1

2
||w||2 + C

n∑
i=1

ξi

such that
yi(w

Tκ(xi)− b) ≥ 1− ξi 1 ≤ i ≤ n
ξi ≥ 0 1 ≤ i ≤ n
ζj = 0 1 ≤ j ≤ m.

κ is the mapping of datapoints into the Kardashian feature space; xi and yi are data points
1, . . . , n and their labels (−1 or 1); ξi are slack variables; and ζi are the sentences imposed
upon O.J. Simpson, defended by Robert Kardashian, Sr., for charges 1, . . . ,m. It can be
proven that for n = 3, each ξi has the psychological interpretation of the expected relative
proportion of attention given to Kardashian daughter i by the American public.

2.2 Learning algorithm

Learning the optimal classifier involves finding an optimal w. A common approach is to
use standard Kuadratic Programming (KP) methods; see [4] for an summary of relevant
techniques3.

However, the optimization manifold has a highly characteristic kurvature (see fig. 3). We
use an alternative approach that takes advantage of the structure of the problem (c.f., our
earlier discussion regarding minimal f -divergences in RKHS).

It is clear4 that the problem meets the conditions to be considered “Konvex”. Analogously,
its dual is “Koncave”. The solution for our problem is bounded by relaxed versions of both;
therefore we use a Koncave-Konvex (KKP) procedure [19] to solve the problem.

2.3 Experiments - Kardashian or Cardassian?

In this experiment, we use the proposed Kardashian-Support Vector Machine (K-SVM) to
learn a classifier for “Cardassian” or “Kardashian” given a window of a humanoid face. The

2Conditions under which our function will converge to a global optimum and stay there for at
least 72 days.

3N.B. Although popular, readers should note significant spelling deficiencies in [4]; notably,
“konvex” is misspelled as “convex [sic]”

4Unless you’re dumb.

51

52

53

54

Acknowledgments

This paper is brought to you by the letter K, the restaurants on Kraig Street, and contri-
butions from viewers like you.

A Proof that Kardashian Kernel KLT/PCA is optimal

Suppose Z ∈ R
k×n is the output of KKKLT(X,Y, k, F); then Z satisfies F (X,Z) ≤

F (X,Z′) ∀ Z′ ∈ R
k×n.

Proof. Trivially follows from the input conditions.

References
[1] Anonymous. Kardashian Nearest Neighbors - toward a totally new era of non-

parametric methods. In Submission to Transactions on Pattern Analysis and Machine
Intelligence, 2012.

[2] Anonymous. KardashianRank: A random STD model for celebrity ranking. In Sub-
mission to Transactions on Computer Networks and ISDN Systems, 2012.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition, 2007.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[5] E!Online. The Internet, 2012. URL: http://www.eonline.com/news/kourtney_
kardashian_pregnant_with_baby/277501.

[6] Gawker. The Internet, 2010. URL: http://gawker.com/5693964/
kim-kardashians-credit-card-may-be-the-worst-credit-card-ever.

[7] Perez Hilton. The Internet, 2012. URL: http://perezhilton.com/
2012-01-11-khloe-kardashian-reportedly-not-a-biological-kardashian.

[8] K. Jenner and R. Kardashian. The Jensen-Jenner inequality. IEEE Transations on Los
Angeles-Themed Statistics, 13(6):1352–1368, mar. 1998.

[9] R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82(1):35–45.

[10] Teuvo Kohonen. Self-Organizing Maps. Springer, 2001.

[11] David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[12] G. Matheron. Principles of geostatistics. Economic Geology, (58):1246–1266, 1963.

[13] MediaTakeout. The Internet, 2010. URL: http://mediatakeout.com/45282/
mto_world_exclusive_kim_kardashian_is_reportedly_pregnant____and_youll_
never_guess_who_the_father_is.html.

[14] John Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, 1909.

[15] XuanLong Nguyen, M.J. Wainwright, and M.I. Jordan. Estimating divergence func-
tionals and the likelihood ratio by convex risk minimization. Information Theory, IEEE
Transactions on, 56(11):5847 –5861, nov. 2010.

[16] RadarOnline. The Internet, 2012. URL: http://www.radaronline.com/exclusives/
2012/01/khloe-kardashian-fertility-treatments-lamar-odom-dallas.

[17] L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin. Kernel belief propagation.
2011.

[18] O. Wilde. The Importance of Being Kardashian. Random House, 1895.

[19] A.L. Yuille, A. Rangarajan, K. Kardashian, K. Kardashian, and K. Kardashian. The
koncave-konvex procedure. Neural Komputation, 15(4):915–936, 2003.

55

56

Track 4

Did you bring enough to reshare
with the class?

0. Implications of Constrained Thought Expression Achieved via a One Hundred-
forty Character Message Limitation Applied to Complex Social Netwo
Nathan Brooks and Tommy Liu

Keywords: #socialmedia, #sm, #140

1. The Spineless Tagless Tweet Machine: Distributed Cloud-Based Social Crowd-
sourced Lazy Graph Reduction on the Web 2.0
Michael Sullivan

2. SIGBOVIK 2012 Take-Home Midterm Examination
James McCann

3. The National Month Of Pushing Spacebar
Tom Murphy VII

Keywords: C++harles D:\ickens, fanfic, repetitive stress injury, 2012: A Space Odyssey

4. What Most Medical Students Know About Computer Science
Brian R. Hirshman

Keywords: computer science, electronic medical records, all-knowing doctors, important stuff, take two kilo-

bytes and see me in the morning, dude we’re too busy learning other things

57

58

The Spineless Tagless Tweet Machine

Distributed Cloud-Based Social Crowdsourced Lazy Graph Reduction on the Web 2.0

Michael Sullivan

Carnegie Mellon University

mjsulliv@cs.cmu.edu

Abstract

Lazy graph reduction is a common technique for implement-
ing non-strict functional programming languages. We present the
Spineless Tagless Tweet Machine, a distributed lazy graph reduc-
tion system that uses Twitter to communicate and store unevaluated
expressions.

1. Introduction

Over the last few decades, there has been a large amount of work
discussing methods for efficient implementation of non-strict func-
tional programming languages [3] [4]. A much touted benefit of
non-strict, pure functional languages is that computations can be
easily parallelized without worrying about concurrency issues.

We propose that the lazy graph reduction model combines well
with a number of other major recent developments in the com-
puting world: the emergence of cloud computing and the social
web. Cloud computing refers to the offloading of computation
and storage to unaccountable and untrusted software-as-a-service
providers, while the social web refers to the “sharing” of statuses,
photographs, personal information, and other data with friends, ac-
quaintances, and enemies (frequently in the form of “frenemies”)
through the Web. One of the most popular cloud applications on
the social web is Twitter [1], which allows users to publish 140-
character “tweets” (which include images), search for tweets by
“hashtags”, and other such “social” activities.

Our proposal is to take advantage of of the parallelizability of
lazy pure functional programs by using the tools of cloud compu-
tation and the social web. We present the Spineless Tagless Tweet
Machine, a distributed lazy graph reduction system that uses Twit-
ter to share unevaluated expressions with the user’s friends, ac-
quaintances, and frenemies.

2. Description

Lazy computation is generally implemented by creating “thunks”
containing computations that might be needed later and evaluating
the thunks (or “pulling on” them) only when the result is needed.
Pulling on a thunk may involve creating new thunks representing
computations for subparts of the value computed.

We’re no strangers to love. You know the rules and so do I. A full commitment’s what

I’m thinking of. You wouldn’t get this from any other guy. I just wanna tell you how

I’m feeling. Gotta make you understand. Never gonna give you up. Never gonna let

you down. Never gonna run around and desert you. Never gonna make you cry. Never

gonna say goodbye. Never gonna tell a lie and hurt you. We’ve known each other for

so long. Your heart’s been aching but. You’re too shy to say it. Inside we both know

what’s been going on. We know the game and we’re gonna play it. And if you ask me

how I’m feeling. Don’t tell me you’re too blind to see. Never gonna give you up. Never

gonna let you down. Never gonna run around and desert you. Never gonna make you

cry. Never gonna say goodbye. Never gonna tell a lie and hurt you.

Copyright c© 2012 ACH . . . NaN BTC

The Spineless Tagless Tweet Machine evaluates a internal lan-
guage called STTM. The STTM is an austere untyped internal lan-
guage with support for lazy evaluation. STTM is essential a more
syntactically restricted variant of the untyped lambda calculus. Al-
gebraic data-types are represented using the Scott encoding; that
is, as functions that take case functions for each of their branches
and then call the matching one. Integers and integer operations are
included in the language for efficiency.

In the Spineless Tagless Tweet Machine model, interested users
run Spineless Tagless Tweet Machine computation nodes on their
machines. These nodes monitor twitter for STTM tweets containing
unevaluated thunks and upon seeing them may choose to do some
evaluation of them and tweet the results. This may involve creating
additional thunks. Note that this does not necessarily need to been
done by the STTM software: individual users should feel encouraged
to evaluate thunks by hand and tweet the results, allowing a crowd-
sourced graph reduction.

Each unevaluated expression will be associated with a unique

hash-tag 1 To pull on thunks, a client searches for tweets with the
appropriate hashtag, in order to find an evaluated version. (This
search may need to be repeated until the thunk has been evaluated.)
Since the size of expressions is likely to exceed the strict 140-
character limit, expressions will be encoded as images and included
with the tweets.

3. Characteristics

One major advantage of this system is that caching of results is
provided by Twitter. If a computation has been performed before,
the result will be immediately found when pulling on the thunk.

Some potential downsides in this system are the potential weak-
ness in privacy and correctness. The system provides no mecha-
nism to assess the correctness of evaluated tweets or to hide tweets
containing private computational data from unwanted observers. In
practice, users of cloud and social services seem to not mind these
limitations.

Deciding which tweets should be evaluated remains a major
open problem in this work. Only evaluating tweets that are directly
needed fails to gain any parallelism, while evaluating all tweets will
result in chasing down infinite data structures and rapidly being
rate-limited by Twitter.

4. Conclusion

In this paper, we presented a novel way to violate Twitter’s Terms of
Service [2] by using it as the communication medium and backing
store for distributed lazy graph reduction. We would have evaluated
the performance, but will be implementing the system sometime
between now and the conference.

1 For this reason, “tagless” is inaccurate. “Spineless” also is inaccurate.

59

References

[1] Twitter. http://twitter.com, .

[2] Twitter terms of service. http://twitter.com/tos, .

[3] S. L. P. Jones. Implementing lazy functional languages on stock hard-
ware: the spineless tagless g-machine - version 2.5. Journal of Func-

tional Programming, 2:127–202, 1992.

[4] M. Naylor and C. Runciman. The reduceron reconfigured. SIG-

PLAN Not., 45(9):75–86, Sept. 2010. ISSN 0362-1340. doi:
10.1145/1932681.1863556. URL http://doi.acm.org/10.1145/
1932681.1863556.

60

SIGBOVIK 2012 Take-Home Midterm Examination

James McCann∗

Adobe Systems, Inc.

Abstract

This exam is 3 pages long and has 5 questions. Please check to be sure that you have all the pages

before leaving class today.

This midterm is closed-book, closed-internet, open-proceedings; you may refer to other material in

this packet, but please don’t use outside references or discuss any of the questions with others until the

examination period has elapsed.

Typeset your answers and any supporting material neatly, label each page with your name and

section number, staple the resulting pages firmly, and slip them under my office door. The hard deadline

for this exam is tomorrow at 4pm. Any exams not turned in at this time will be counted as failing grades.

I will be able to answer questions on the exam during my normal office hours or via e-mail. I will

not answer questions received after 3pm, however.

Good luck.

CR Categories: 5.Q.a [Exams]: SIGBOVIK—2012

1 Optimal ordering [10pts]

Given a list of the first n non-negative integers in some arbitrary order, place them in sorted order by using

as few calls to move(p, t) as possible. (Where move(p, t) moves the element at position p in the list to

just before the element at position t.)

Example: Given (1, 0, 5, 2, 4, 3), one optimal sequence of calls is:

Call resulting list

- (1, 0, 5, 2, 4, 3)
move(1, 0) (0, 1, 5, 2, 4, 3)
move(2, 6) (0, 1, 2, 4, 3, 5)
move(4, 3) (0, 1, 2, 3, 4, 5)

Exercises:

1. How – in an abstract, mathematical sense – can you determine the minimum number of calls to

move required? [2pts]

2. Give an efficient algorithm for determining the number of calls. [4pts]

3. Give an efficient algorithm which outputs a minimum-length list of calls. [4pts]

∗e-mail: jmccann@adobe.com

61

2 Arc subdivision [8pts]

Given non-coincident start and end points – s, e – and a midpoint – m – equidistant from these, one can

draw exactly one circular arc that starts at s tangent to sm, ends at e tangent tome, and is contained in the

triangle s, e,m. (For the purposes of this problem, I consider straight lines to be circular arcs of infinite

radius.)

When drawing or colliding against arcs, it is convenient to be able to subdivide them – that is, produce

points m1, p,m2 such that s,m1, p and p,m2, e each describe half of the arc.

Illustration:

Exercises:

1. Write an arc-subdivision subroutine. You do not need trigonometry to solve this problem. [6pts]

2. What shape results when your routine is applied withm not equidistant from s and e? [2pts]

3 Enumeration of sums [12pts]

Given a set of integers, one may wish to enumerate through subsets of those integers in order of their sum.

Example: Given set {−1, 2, 3}, one ordering of the subsets by their sum is:

Subset Sum

{−1} −1
{} 0

{−1, 2} 1
{2} 2

{−1, 3} 2
{3} 3

{−1, 2, 3} 4
{2, 3} 5

Exercises:

1. Write a time-efficient subroutine that returns the next subset every time it is called. This subroutine

may store data between calls. [8pts]

2. (Extra Credit) Is your subroutine memory efficient? [10pts]

3. Why is it difficult to write a time-efficient subroutine that does not store data between calls? [3pts]

4. Describe a sufficient condition on the set such that one can write an efficient subroutine that does

not store extra data. Your condition should admit an infinite number of sets. [1pts]

62

4 In-place rearrangement [10pts]

Sometimes, it is desirable to reorder an array of items in place. That is, given an array A = (a1, . . . , an)
of generic items and an array T = (i1, . . . , in) of target indices for those items, you wish to overwrite A

with (ai1 , . . . , ain).

Note: For this problem, the only operations available on generic items are creation and assignment.

Example: Given array (a, d, f, c, e, b) and target indices (0, 2, 4, 1, 3, 5), your subroutine should over-write
the input array with (a, c, d, e, f, b).

Exercises:

1. Given an array of n items and an array of target indices, write a subroutine that reorders these items

in place in linear time and constant memory. You may clobber the array of indices. [4pts]

2. Write a routine to rotate (in-place) a rectangular image stored in scanline order by 90 degrees; the

routine should operate in linear time and constant memory. Note that there is no target indices array.

[5pts]

3. Describe a sufficient condition on the structure of the target indices which will allow you to perform

remapping operations without clobbering the target indices array. [1pts]

5 Lights Out [9pts]

Lights Out is an electronic puzzle game featuring a grid of lit buttons. Every time a button is pressed, that

button (and its 4-way neighbors) toggle from lit to unlit or unlit to lit. The goal is to toggle all buttons to

the unlit state.

We can generalize Lights Out in two ways. First, we can get rid of the grid, and instead work over a

general directed graph, where activating vertex v toggles all vertices v′ such that there is an edge (v, v′).
Notice that this definition allows us to chose whether activating a vertex toggles itself. Second, we can

begin to talk about having S states instead of only 2. So every vertex of our graph is assigned a number

0, . . . , S − 1, and toggling that vertex increases the number by one (with S − 1 wrapping back to 0).

Exercises:

1. Describe a method for finding a solution in this general setting which works in O(v3) time. [3pts]

2. When is this solution optimal? [3pts]

3. Given a non-optimal solution, how much time is required to make it optimal? [3pts]

End of Exam

63

64

The National Month Of
Pushing Spacebar

by Tom Murphy VII

65

Copyright c© 2012 Tom Murphy VII
SIGBOVIK Press

First edition, April 2012

66

P
rior attempts at writing a novel had been unsuc-
cessful. Think of all the obstacles: There’s the blink-
ing green cursor of the tele-type that you can’t figure
out how to turn off. And when you put tape on the

screen to cover it up, then it keeps moving whenever you make
progress on the novel, except if you count progress like deleting
some piece of text and adding new, better text of equal length.
Or like, making the font of the whole book smaller with each
added letter, like when you’re typing your name onto a sticky
name badge and you decide to add the ceremonial “Ph.D.” and
“D.D.S.” without realizing that due to horizontal space con-
straints, they will diminish the gravitas of the rest of your name,
as measured in point size, except you can’t turn back now. And
also you can’t do that on a tele-type on account of it only has
one font, built into the Rondom Occess Memory, called Times
New Rondom, which is also green and looks like it was invented
for other computers to read, which makes you feel like a robot-
man or -woman (“wo-bot”), who are known to not be able to
write novels except like “1001010101: A Tale Of Two Bitties”
by C++harles D:\ickens. So that is stymying.

Then you discovered the National Novel Writing Month
a.k.a. NaNoWriMo,1 the creatively capitalized internet web page
that encourages stymied novel writers to risk their jobs, ro-
mantic entanglements, and friendships for the chance to self-
publish horrendous exigent fantasy pastiche, thinly-veiled Twi-
light, Harry Potter, and Dr. Who crossover fanfic, or offensively
self-referential poo-poop kinda like this. All you need to do is
set aside 120 hours in the month of November to jot down 50,000
words that have something to do with each other, and declare
victory. Maybe even pay a small fee for a publishing service that
provides you with a UPC-like number precomputed to have a

1http://nanowrimo.org/

67

valid check digit, and an obligation to purchase too many copies
of your work at nearly novel-low prices.

And you did that too, but what shame! After customizing
your profile and packing the fridge up with the right snacks
(things you once saw someone who you consider health-conscious
and knowledgeable about food things bring to a party), and
writing a purple description of your main character, who was just
by the way a faint simulacrum of either you (but cooler), your
imaginary girl/boyfriend, your World of Warcraft character, or
something like that, but anyway doesn’t matter because after
writing that beginning bit and a little bit of not-thought-through
plot thickening, it all dried up again.

But enough about that because, sitting afore the pale com-
puter glow or perhaps with a hardcopy in hand patiently await-
ing a talk to finish at a prestigious academic conference, you
are now discovering the solution: The National Month of Push-
ing Spacebar. This annual competition, fresh as angel diapers,
the spring chicken of massively-singleplayer forced-creativity sui-
cide pacts, challenges you to achieve your dream of producing a
novel-sized document without the creative stress and feelings of
inadequacy that come from having that document also contain
original content.

The premise is simple: During the National Month, push
spacebar. The National Month begins on Friday 30 March 2012
to coincide with the prestigious academic conference SIG-
BOVIK, and ends at 23:59:59.9 eastern-jingoist-time on Sunday
29 April 2012, not including the final day of the only-partially-
national month of April, for a nice round 31 days. Due to no
bullshits having to do with leap anything or 2nd extended dead-
line, this comprises exactly 44,640 minutes. Success constitutes
pressing the spacebar 100,000 times, which yields a novella of
approximately 33 pages, consisting only of whitespace. The best

68

part is you don’t need to think about anything hard or worry
that it won’t turn out good, because it can only be spaces.
100,000 elegantly simple, stress-relieving spaces.

Your eyebrows perk up with interest. Actually one eyebrow
goes up and the other goes down. Can the NaMoOfPuSp be
the real deal Holyfield? Indeed it may, sir or madam. With one
finger in the air politely to indicate pause, you wonder, “What
more about the logistics shall I know?”

Well, first things first, get this in your web browser’s location
indicator box thing pronto:

http://national.month.of.pushing.spacebar.org/

Next you can do the usual stuff involving making an account
and customizing the profile. To avoid the distractions and body
dysmorphic stressors having to do with selecting a profile picture
that adequately captures your on-line persona while attracting
potential mates without seeming too self-involved or pimply (if
male) or confusing potential creepers as to attractiveness status
or gender appropriateness (if female), you can only select one of
two faceless grey line drawings as your profile avatar.

“Endless customization options totaling 1 bit of entropy!”
you exclaim. “What other fields can I type in?”

Well, don’t get too excited but you can also modify the title
of your book, and you can set your status message, which allows
you to do social networking. These can only consist of spaces,
but beware, for they do not count towards your total number

of spaces pressed. To prevent cardiac involvement, a preview
of the profile customization interface is presented in Figure 1,
which should reduce arousal upon seeing it for the first time.

69

Figure 1: This is what it looks like when you’re customizing
your profile (well, my profile).

You’re looking peppier already, and you say zestfully, “Aw
right! Profile customized. Networks socialed. Now what?”

The next thing is to push spacebar. When on the proper
page, pushing spacebar records the action and instantly apprises
you of your progress. A bunch of data boxes and graph things
show math entertainment for you as you press, and the counter
indicates your tally front and center. How you type spaces is up
to you. Some people prefer to push, others to press. Of course
you can’t just hold down the spacebar, duh.

Warning: Repeatedly pressing the spacebar, or any key, can
cause repetitive stress injury. Just kidding! Nobody needs to
worry about that. It’s a fake disease for hypochondriacs like
fibromyalgia. Just kidding about kidding! It’s totally real. So’s
fibromyalgia! So’s hypochondriasis! Just kidding! You totally
have that! You’re dying inside! Actually your hands are go-
ing to fall off from all the pressing! But seriously, press the
spacebar gingerly and without repetitive stress, or RSI can be
yours, truly. FALSE! DOUBLE FALSE! I was kidding! Hehe

70

but really. Quotes around the whole thing.

Warning: If you try to do crazytimes stuff like have multi
different computer devices all pushing spacebars at the same
account at the same simultaneous, then you might lose record
of some spacebars. Don’t do that. It’s crazy!

Hippies must turn on Javascript.

Y
ou can press spacebar all day and night, as far as
I’m concerned, but the best strategies probably in-
volve doing a bit each day until you get pretty sick
of it. 3,226 spaces a day will get you to 100,000 just

on time. The graphs help you see how you’ve been performing
on a daily basis and what your pace needs to be for the rest of
the national month, in order to reach the goal, pro-rated based
on how much you’ve done. This thing is totally fancy. Also if
you have the home page open, you can watch the progress of
yourself and your “friends”, and the numbers just like change
right before your eyes like some kind of fucking wizard did that.

O
h by the way, I wanted to point out a little funny mys-
tery here which was curious. Take a looksee at Figure 2.

Figure 2: Someone has taken a comb filter to our spacebars.
What is that about?

71

What we have here, muffin, is the distribution of intervals
between space pushes in one practice session of pushing by the
author.2 What the f ? We see the expected Gaussian distri-
bution centered around 200 milliseconds. We also see fairly in-
explicable regularly-spaced gaps in the otherwise pretty nicely
shaped bell curve: A gap of 202 milliseconds occurs about a
hundred times, 203 milliseconds about 20, 204 milliseconds only
4, 205 milliseconds only 6, then back up to 90 times for 206 ms.
Why no love for milliseconds 204 & 205? It’s like even though
my spacebar presses have some random variance in them cen-
tered around the mean, there is much less randomness in the
lowest digit. That don’t make no sense, sugar, which is to say
that it does not make sense. At least for a moment and then
you realize there’s probably some discretization thingy going on
inside the Chrome browser that causes events to be more likey to
be processed at certain times at certain interval-intervals which
is not that disturbing after all, except that it also happens in
the Safari browser? This may be a mystery that we never solve,
candypants, and that’s just how the world works sometimes.

In th
is paperwork, I told the tale
of NaMoOfPuSp, in an attempt
to engage you in its competitive
spirit. Combining compressive

art movements like NaNoWriMo and Album-a-Day with the
increment-operator-based gameplay of World of Warcraft and
Battlefield 3 (themselves popular topics of NaNoWriMo and
Album-a-Day works), the National Month of Pushing Spacebar
provides a way to achieve your creative dreams without actu-

2Don’t get worried. Although the author is participating in this year’s
NaMoOfPuSp, and expects to whoop all y’all, he is not starting early or
nuthin’, he’s just workin’ out the kinks in the web-site. Everybody starts
from scratch at the beginning of the National Month.

72

ally being creative, a way as fresh as celery from the crisper &
princes of Bel-Air. So let’s get on with it! Right now, even while
you read this, you could be pressing spacebar. And who knows,
maybe you could be the next whatever that chick is that wrote
Twilight, or John Cage? It’s never too late to join! (Unless it’s
after April 30, 2012.)

You can’t click, but you could type:

http://national.month.of.pushing.spacebar.org/

Only you, or perhaps someone with your druthers, can pre-
vent forest fires.

73

74

What Most Medical Students Know About

Computer Science

Brian R. Hirshman
School of Medicine

University of California, San Diego
La Jolla, CA 92093

hirshman@ucsd.edu

75

76

Track 5

Programming languages research and
other games for children

1. Modeling Perceived Cuteness
Nathan Brooks and Evelyn Yarzebinski

Keywords: cute, puppy, kitten, turtle, spider, snake, dog, cat, gecko, hamster

2. i-PHONE app stor : where is my pants
Dr. Tom Murphy VII, Ph.D. and Dr. Abigale G. Lade, Ph.D.

Keywords: pants, where, is my, juvenilia

3. An Extensible Platform for Upwards and Sidewards Mobility
David Renshaw

4. A modern optimizing compiler for a dynamically typed programming
language: Standard ML of New Jersey (preliminary report)
Ian Zerny

5. Programming Language Checklist
Colin McMillen, Jason Reed, and Elly Jones

77

78

Modeling Perceived Cuteness

Nathan Brooks

Carnegie Mellon University

Evelyn Yarzebinski

Carnegie Mellon University

Abstract—In this paper, we empirically investigate factors
which contribute to a creatures perceived cuteness (PC). For
a variety of lifeforms that could be found in a home as a
pet or occupant, we review both its physical factors as well
as lifestyle choices of the homeowner for possible influences
on PC. Data was collected from volunteer participants using
an online submission form and several strong correlations were
identified. In particular, strong trends in creatures leg-length-to-
torso-volume (LL:TV) ratio were realized, as well as correlations
with participant eye color. This work will serve as the basis
for future work for providing better pet-owner matches and
designing genetically engineered pets optimized for cuteness.

I. METHODS

We created a survey that involved a wide range of species

one might reasonably keep as a pet. Although extremely

finicky in allowing consistent access, the image sharing site

Flickr was invaluable for our research. In order to avoid bias

towards one species over another, great care was taken to

attempt to keep the types of pictures uniform. When possible,

we chose images that displayed a lateral perspective of the

species in a natural light, which aligned closely with our

hypothesis regarding the legs and torso. Additionally, we

filtered the image results by skin or coat color to avoid a

confound of subject color preference. In total, fifteen different

images comprised our survey. Figure 2 contains the pictures

provided for review by our subjects.

Fig. 1. Images used in the survey: Corgi, adult greyhound, baby dachshund,
turtle, human baby, baby greyhound, adult dachshund, kitten, adult cat, snake,
daddy long-legs, gecko, hamster, rabbit, adult saluki

Opinions about these fifteen species were collected, along

with 5 demographic questions asking about expected things,

such as gender, eye color, hair color, toothpaste preference,

and favored Ninja Turtle. We created a 10 point Likert scale

ranging from 1 (My lawyers will contact you about this life

scarring image) to 10 (I am drooling from the cuteness) to

aid in standardizing opinions. We collected data from 37

anonymized participants over a 6 hour period by posting our

survey to social media websites.

II. DISCUSSION

After collecting the data, we laboriously calculated the

LL:TV ratio for each represented species through exact ap-

proximation. These data were then graphed in order of their

increasing LL:TV ratio (on a scale from Snake to Daddy

Longlegs) on the x axis and the PC rating on the y axis.

No strong pattern was found, which we suspected was due

to different PC factors for different types of animals. The data

was then repartitioned to form results for three categories:

Dogs, Furry Creatures, and Non-Furry Creatures. The Dog

graph (Figure 2) followed a somewhat bell-curve shape; that

is, a golden LL:TV ratio for dogs appears to exist. Another

interesting pattern was observed for the non-furry creatures

graph (Figure 3), which clearly is a table-shaped graph. It

seems that for non-furry creatures, definite negative feelings

regarding extreme values of the LL:TV ratio exist. However,

the unimodel features of the dog and non-furry creature data

is not reflected in the furry creature data (Figure 4), which

is bimodal. A second peak is introduced by the inclusion of

hamster data, which breaks the low-cuteness trend for very

small LL:TV ratios found in the other data sets.

Fig. 2. Dog PC versus LL:TV ratio

79

Fig. 3. Non-furry creature PC versus LL:TV ratio

Fig. 4. Furry creature PC versus LL:TV ratio

One surprising finding was the relationship between eye

color and a favorable PC rating of cats (Figure 5). A one-

way between subjects ANOVA was conducted with Adult

Cat rating as the dependent variable and Eye Color as the

independent variable. There was a significant effect of Eye

Color on the Adult Cat cuteness rating at p¡.05 level, F(3,33)

= 8.550, p = .000. Bonferroni post hoc tests revealed that the

mean Adult Cat score for blue-eyed participants (M = 8.00,

SD = 1.70) was significantly different than the mean Adult Cat

cuteness rating for brown-eyed participants (M = 5.00, SD =

1.08), p = .000; hazel-eyed participants (M = 5.50, SD = 1.31),

p = .006; and green-eyed participants (M = 5.83, SD = 1.94),

p = .043. Brown-eyed, hazel-eyed, and green-eyed participants

did not give significantly different cuteness ratings from each

other on a p¡.05 scale.

We also found a strong correlations between cuteness rat-

ings for spiders and cuteness ratings for snakes (ie, creepy-

crawlies); r(37) = .610, p = .000. Those who give low ratings

to spiders also tend to give low ratings to snakes; those who

give high ratings to spiders also give high ratings to snakes

and obviously need to seek professional help.

We had hypothesized that there would be a relationship

between PC of turtles and favored Ninja Turtle, but this

was not confirmed with an ANOVA, F(3,33) = 1.488, p =

.236. This is truly upsetting. Other expected results/dreams

Fig. 5. Adult cat PC versus participant eye color

that were crushed include: Correlation between preference for

younger TMNT (Rafael, Michelangelo) and higher PC ratings

for younger animals Correlation between eye or hair color

and favorite TMNT (Not enough blue-haired people out there)

Knowledge of who the TMNT are (Really, Nitram1? Really?)

And many more! (Its hard being a researcher sometimes...)

III. FUTURE DIRECTIONS

Despite our proposed LL:TV ratio, there is still some

uncertainty in our model. A followup study seeking to further

reduce bias through a finer animal picture and participant

demographic selection could offer more accurate data. Specif-

ically, two additional studies using exclusively cats or dogs

are planned to avoid bias from animal preference. In order

to collect consistent imagery, the authors may be required to

perform extensive field research at local animal shelters, dog

parks, and cat palaces. In addition, the bimodalness of Figure

4 presents interesting opportunities for genetic engineers and

adventurers. Future work may include design of a furry animal

with a LL:TV ratio of zero, or a rainforest safari to find

creatures at LL:TV points where data is insufficient.

IV. CONCLUSION

We have discussed our preliminary analyses that provide

some data-driven ways in which future pet ownership can be

specifically tailored to meet a certain demographics prefer-

ences. We have shown, introduced, and discussed preferences

regarding the LL:TV ratio and the implications this previously

undiscovered ratio could have for future pet ownership. We

have also discussed findings that show the natural relationship

between certain species and genetic demographics. These

metrics provide the basis for additional work in many areas

to increase model accuracy and areas of application.

1Purely hypothetical name. The authors do not know any of the participants
real names as per IRB2regulations.

2Irish Republican Brotherhood.

80

i-PHONE app stor :

where is my pants

Dr. Tom Murphy VII, Ph.D. Dr. Abigale G. Lade, Ph.D.

1 April 2012

Abstract

Dear I–PHONE app stor please accept my applica-
tian for publishment of my game

Keywords: pants, where, is my; juvenilia

1 Introduction

Dear app stor I want you to have my game . My
game is where is my pants. Where is my Pants is
a newwest game for the i-touch (and I-PAD, ect.).
I believe it should be publiced it the app stor. For
every1 to play the game and find my pants. Because

1.1 Reasons because it should be pub-

liced

1. This game it SO FUN!!

2. ∪ can play it any time or any place

3. I believe that if you put your mind to it, ∪ can
accomplish anything

4. There are one thousand people with i-touch (and
¡-PAD ect.) . If evry touch and/or PAD bought
this game. Then I would have at least RICH!!!!!!!

5. I don’t know where did my pants went

-1Copyright c© 2012 the Regents of the Wikiplia Foundation.

Appears in SIGBOVIK 2012 with the permission of the Asso-

ciation for Computational Heresy; IEEEEEE! press, Verlag-

Verlag volume no. 0x40-2A. Distribute free-ily.
a

♥ 0.00

1.2 Price of game

1. The price of the where is my pants will be $9.99
USA.

1.3 How to play

1. get down load game in i- touch

2. lunch game

3. look in the screen to see if you find pants

4. touch pants to see where is my pants

5. lotta of people have pants! so keep touching

6. if the pants .

7. ∪ can go in the next world to find more pants

1.4 Various pants worlds

Pants can be seen in various pants worlds

1. under the sea (a.k. in the ocean)

2. at the beach (any beach)

3. wisconsin

1.5 APP

http://spacebar.org/pants/

81

Figure 1: this is app where is my pants

82

83

84

A modern optimizing compiler

for a dynamically typed programming language:

Standard ML of New Jersey

(preliminary report)

Ian Zerny <ian@zerny.dk>

April 1, 2012

Abstract

We present Dynamic ML: a dynamically typed language in the ML

family. We show how Dynamic ML provides modern programming-language

features, such as type reflection and implicit coercions. In addition, we

show how the existing optimizing compiler infrastructure of Standard ML

of New Jersey outperforms that of other dynamically typed programming

languages currently in wide-spread use.

Contents

1 Introduction

2 Dynamic ML

3 Tools

3.1 The compiler: sed
3.2 The editor: dml-mode
3.3 The runtime: Standard ML of New Jersey

4 Benchmarks

4.1 The Fibonacci function
4.2 The faster Fibonacci function

5 JavaScript-style equality

6 Conclusion and perspectives

85

1 Introduction

Standard ML [2] is an aging language by now. It appears that most of its
development has stagnated. Meanwhile, development has continued for other
programming languages and among their features we can find many that Stan-
dard ML lacks: aspects, contracts, duck typing, dynamic scope, dynamic typing,
implicit coercions, lvalues and real variables defined by assignment, multiple in-
heritance, objects, runtime code evaluation, and type reflection, just to name a
few. These are all notable features provided by 2.0 programming languages.

In this work, we take a first step towards modernizing ML and consider
dynamic types for an ML-like language. We follow Harper’s vision of a dynam-
ically typed language as a unityped language [1] and extend Standard ML with
such a unityped embedded language. We assume the reader to be mildly fa-
miliar with functional languages (such as Standard ML) and with dynamically
typed languages (such as Python or JavaScript). The entire development can
be found on the author’s website.1

2 Dynamic ML

We extend the syntax of Standard ML with constructs for dynamically typed
features. The extension is defined by the following BNF:

decl ∋ d ::= FUN f [x1, ..., xn] = e NUF (recursive function definitions)

exp ∋ e ::= IF e THEN e ELSE e (conditionals)

| FN [x1, ..., xn] => e NF (anonymous functions)

| e$[e1, ..., en] (application)

| VOID (literal onething)

| TRUE | FALSE (literal booleans)

| NUM n (literal numbers)

| STR ”...” (literal strings)

| LIST [e1, ..., en] (literal lists)

| asTYPE e (type casts)

| isTYPE e (type predicates)

| PRINT e | PRINTLN e (printing)

where TYPE is one of the types: VOID, BOOL, NUM, STR, LIST, or CLO. Since
Dynamic ML is an extension of Standard ML, decl and exp are super-sets of
Standard ML declarations and expressions respectively. A program is then just
a sequence of declarations (or a module or any other valid top-level declaration
from Standard ML).

1http://www.zerny.dk/dynamic-ml.html

86

Equality. The primitive equality is the straightforward extension of structural
equality in Standard ML. Two values are equal if they are of the same dynamic
type and the raw data is structurally equal. For example:

val _ = (PRINTLN (NUM 1 == NUM 0);

PRINTLN (NUM 0 == STR "0");

PRINTLN (STR "0" == STR "0"));

will print false, false, and true.
Of course, this is a very simpleminded notion of equality, but luckily we

can extend it to more powerful equalities if we wat. We illustrate this with a
JavaScript-style semantics described in Section 5.

Type casting. Often we will need to pass the raw data of a dynamically
typed value to some typed ML code. In such a case, we need explicit casts to
obtain the raw value. These are done with the asTYPE type-cast expressions.
For example, say we want the size of a string. We can use the Standard ML
String.size for this:

FUN size[s] =

NUM (Num. fromInt (String .size (asSTR s)))

NUF

val s = STR " Hello World !"

val n = size$ [s]

which, when loaded, will give us the output:

val size = CLO fn : DML.t

val s = STR " Hello World !" : DML.t

val n = NUM 12 : DML.t

For the most part, such type casts will be implicit in the dynamically typed
code, as can be seen here from the use of size. Should a type cast be applied
to a dynamically typed value of a different type a TYPE_CAST_ERROR is raised.

Type reflection. Now that we have types at runtime we can inspect them!
This is a hallmark feature of a solid dynamically typed language and Dynamic
ML provides ample support for it. If we just need to check for one type we can
use the isTYPE predicates. For example:

FUN foo[x] =

IF isNUM x

THEN x + NUM 42

ELSE x

NUF

In other cases, we want have behaviors for several types. Here we can use the
built in case analysis of Standard ML. For example, lets define a more reusable
size function typical found in dynamically typed languages:

87

FUN size[x] =

(case x

of STR s => NUM (Num. fromInt (String .size s))

| LIST l => NUM (Num. fromInt (List. length l))

| _ => VOID)

NUF

val n1 = size$ [LIST [NUM 1, NUM 2]]

val n2 = size$ [STR " Hello World !"]

val n3 = size$ [NUM 10]

which yields:

val n1 = NUM 2 : DML.t

val n2 = NUM 12 : DML.t

val n3 = VOID : DML.t

In the above, we let VOID be the result for non-sizable values. This use of case
analysis is kind of neat since we do not need to put in the asSTR and asLIST

type casts in the case analysis.

3 Tools

Any real programming language comes with tools. Currently we provide a
compiler (the dmlc program), a runtime system (the Standard ML of New Jersey
system), and an editor (the dml-mode for Emacs).

3.1 The compiler: sed

The compiler for Dynamic ML is a sed-script that desugars the Dynamic ML
constructs into Standard ML. This script is found in the file dmlc. To execute a
program, simply desugar it and then run the output with Standard ML of New
Jersey in the working directory containing the Dynamic ML implementation file
dml.sml:

$./ dmlc hello .dml

$ sml hello .dml.sml

...

val it = () : unit

’Hello World !’

-

3.2 The editor: dml-mode

The dml-mode for Emacs provides a nicer interface when working with Dy-
namic ML. It provides syntax highlighting and interacting with the underly-
ing Standard ML process (which will be executing our Dynamic ML code).
To load dml-mode in Emacs, hit M-x load-file RET, then input the path to

88

dml-mode/dml-mode-startup.el. Now, opening a .dml file will start the DML

mode. To load code from a buffer, simply hit C-c C-b. On the first go it will ask
for the Standard ML process to use (sml should work if you have it installed).
After that the code within the buffer will be compiled and then loaded and
executed by Standard ML of New Jersey.

3.3 The runtime: Standard ML of New Jersey

Dynamic ML is executed by embedding it into Standard ML. This embedding
defines the dynamic type as a one big recursive sum type: DML.t. Each type
of dynamic runtime value is thus a summand in the dynamic type DML.t. The
constructs used in the image of the embedding are contained within the Standard
ML structure DML found in dml.sml.

4 Benchmarks

Having defined Dynamic ML and its execution environment we now benchmark
it against Python, a popular and dynamically typed programming language.

4.1 The Fibonacci function

Consider the quintessential benchmark program: the recursively defined Fi-
bonacci function. Here is its definition in Dynamic ML:

FUN fib[x] =

IF x == NUM 0 THEN x

ELSE IF x == NUM 1 THEN x

ELSE fib$[x - NUM 1] + fib$[x - NUM 2]

NUF

and its counterpart in Python:

def fib(x):

if x == 0: return x

elif x == 1: return x

else: return fib(x - 1) + fib(x - 2)

Timing these two functions applied to 35 yields a wall time of 11020 millisec-
onds for Dynamic ML and 20272 milliseconds for Python. That is 1.84 times
slower for Python compared to Dynamic ML. Despite being defined for a func-
tional language, the Standard ML of New Jersey implementation demonstrates
its superiority as an optimizing compiler and runtime for a dynamically typed
programming language.

4.2 The faster Fibonacci function

Somewhat surprisingly, we can do better yet! We can step-wise optimize our
use of type reflection to improve performance of the Fibonacci function.

89

First, we create a “primitive” (i.e., non-dynamically typed) function inside
fib that knows we only ever give it one argument:

val fib1 =

FN [x] =>

let fun go x =

IF x == NUM 0 THEN x

ELSE IF x == NUM 1 THEN x

ELSE go (x - NUM 1) + go (x - NUM 2)

in go x

end

NF

Here fib1 35 runs in 6929 milliseconds.
Second, we call the inner function with the raw number data:

val fib2 =

FN [x] =>

let fun go x =

if x = 0 then NUM x

else if x = 1 then NUM x

else go (Num.- (x ,1)) + go (Num .-(x ,2))

in go (asNUM x)

end

NF

Here we have to be careful not to mix the raw numbers (which we do subtraction
on) from the dynamically typed numbers (which we do addition on). Now
fib2 35 runs in 1487 milliseconds.

Third, we make sure we return the raw number from the inner function too:

val fib3 =

FN [x] =>

let fun go x =

if x = 0 then x

else if x = 1 then x

else Num .+ (go (Num.- (x ,1)) ,

go (Num.- (x ,2)))

in NUM (go (asNUM x))

end

NF

Now fib3 35 runs in 617 milliseconds.
For each definition, Table 1 lists its total running time in milliseconds and

its relative speed compared to original Dynamic ML definition. Our conclusion:
not only is Dynamic ML faster than other popular dynamically typed languages,
we can actually make programs even more efficient if we care to do so.

90

Language RT in ms Rel RT

Python 20272 1.84
Dynamic ML: fib 11020 1
Dynamic ML: fib1 6929 0.63
Dynamic ML: fib2 1487 0.14
Dynamic ML: fib3 617 0.06

Table 1: Running time for the Fibonacci function applied to 35

5 JavaScript-style equality

As mentioned in Section 2, the equality operator is not really what we find
in most dynamically typed languages. For example, it requires the user to
add annoying type conversions by hand. To avoid this we show how to define
alternative interpretations of the dynamic types entirely within the language.
This allows defining more user friendly operators.

In the Dynamic ML distribution, we provide a JavaScript structure, JS,
that implements JavaScript-style conversions and operators. To redefine the
Fibonacci function using JavaScript-style semantics we simply open up the JS-
structure locally to the function:

local open JS in

FUN fibjs [x] =

IF x == NUM 0

THEN x

ELSE IF x == NUM 1

THEN x

ELSE fibjs$ [x - NUM 1] + fibjs$ [x - NUM 2]

NUF

end

We have effectively extended the domain of the Fibonacci function to any
dynamic value that can be interpreted as a number in a JavaScript-like way:

- fibjs$ [STR "0"];

val it = STR "0" : t

- fibjs$ [STR "1"];

val it = STR "1" : t

- fibjs$ [STR "2"];

val it = NUM 1 : t

- fibjs$ [STR "10"];

val it = NUM 55 : t

- fibjs$ [STR ""];

val it = STR "" : t

- fibjs$ [STR " -1"];

C-c C-c

Interrupt

91

The JavaScript-like equality allows us to easily compare values of distinct
types:

- open JS;

- STR "" == NUM 0;

val it = BOOL true : t

- NUM 0 == STR "0";

val it = BOOL true : t

That might look disturbing, but fret not, we cannot draw bogus conclusions
such as the empty string being equal to a non-empty string:

- STR "" == STR "0";

val it = BOOL false : t

That would be nonsense.

6 Conclusion and perspectives

We have presented Dynamic ML, a dynamically typed language in the ML fam-
ily. Dynamic ML shows that even though Standard ML has a static type system
we don’t need to use it. The language is a simple embedding into Standard ML
and allows us to reuse the existing optimizing compiler and runtime infrastruc-
ture. Indeed, the execution of dynamically typed programs in Standard ML of
New Jersey is faster than the execution of programs in Python.

To illustrate the ease of use and performance of Dynamic ML, we would
have liked to finish with a more real-world program than the Fibonacci function.
Unfortunately, our current map/reduce program fails with a TYPE_CAST_ERROR

exception and we have not been able to debug the cause. We are now looking
at building a debugger.

Our next step is to add objects. It is a bit of a stretch to call a language
without an object system for a dynamically typed (or modern) language.

As illustrated in the optimizations of the Fibonacci function, a lot of time
can be saved by optimizing out dynamic type casts. Future work should con-
sider automatically optimizing these cases. We are looking at a refinement-type
analysis to this effect.

We are also excited about Ohori et al.’s resent work on SML# [3], and hope
that it will open new vistas for Bovik’s use of thaumaturgic data bases.

Acknowledgments: This work was done while visiting CMU in the winter
2011/2012. Many thanks to Bob Harper for his lecture series on the principles
of programming languages in which it became clear to the author that we can
avoid the static types of Standard ML altogether.

92

References

[1] Robert Harper. Programming languages: Theory and practice. Working
Draft v1.27. Available at http://www.cs.cmu.edu/ rwh/plbook/, 2012.

[2] Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard
ML, version 2. Report ECS-LFCS-88-62, University of Edinburgh, Edin-
burgh, Scotland, August 1988.

[3] Atsushi Ohori and Katsuhiro Ueno. Making Standard ML a practical
database programming language. In Manuel M T Chakravarty, Olivier
Danvy, and Zhenjiang Hu, editors, ICFP, pages 307–319, Tokyo, Japan,
September 2011. ACM Press. Invited talk.

93

94

Programming Language Checklist

Colin McMillen Jason Reed Elly Jones

March 19, 2012

1 Introduction

You appear to be advocating a new:
2 functional 2 imperative 2 object-oriented 2 procedural 2 stack-based
2 “multi-paradigm” 2 lazy 2 eager 2 statically-typed
2 dynamically-typed 2 pure 2 impure 2 non-hygienic 2 visual
2 beginner-friendly 2 non-programmer-friendly
2 completely incomprehensible

programming language. Your language will not work.
Here is why it will not work.

2 Motivation

You appear to believe that:
2 Syntax is what makes programming difficult
2 Garbage collection is free 2 Computers have infinite memory
2 Nobody really needs:

2 concurrency 2 a REPL 2 debugger support 2 IDE support 2 I/O
2 to interact with code not written in your language

2 The entire world speaks 7-bit ASCII
2 Scaling up to large software projects will be easy
2 Convincing programmers to adopt a new language will be easy
2 Convincing programmers to adopt a language-specific IDE will be easy
2 Programmers love writing lots of boilerplate
2 Specifying behaviors as “undefined” means nobody will rely on them
2 “Spooky action at a distance” makes programming more fun

3 Problem Statement

Unfortunately, your language (has/lacks):
2 comprehensible syntax 2 semicolons 2 significant whitespace 2 macros
2 implicit type conversion 2 explicit casting 2 type inference
2 goto 2 exceptions 2 closures 2 tail recursion 2 coroutines
2 reflection 2 subtyping 2 multiple inheritance 2 operator overloading

95

2 algebraic datatypes 2 recursive types 2 polymorphic types
2 covariant array typing 2 monads 2 dependent types
2 infix operators 2 nested comments 2 multi-line strings 2 regexes
2 call-by-value 2 call-by-name 2 call-by-reference 2 call-cc

4 Theoretical Considerations

The following philosophical objections apply:
2 Programmers shouldn’t need category theory to write “Hello, World!”
2 Programmers shouldn’t develop RSI from writing “Hello, World!”
2 The most significant program written in your language is its own compiler
2 . . . isn’t even its own compiler
2 No language spec
2 “The implementation is the spec”

2 The implementation is closed-source
2 covered by patents
2 not owned by you

2 Your type system is unsound
2 Your language cannot be unambiguously parsed

2 a proof of same is attached
2 invoking this proof crashes the compiler

2 The name of your language makes it impossible to find on Google
2 Interpreted languages will never be as fast as C
2 Compiled languages will never be “extensible”
2 Writing a compiler that understands English is AI-complete
2 You rely on an optimization which has never been shown possible
2 There are fewer than 100 people alive smart enough to use your language
2 takes exponential time
2 is known to be undecidable

5 Implementation

Your implementation has the following flaws:
2 CPUs do not work that way
2 RAM does not work that way
2 VMs do not work that way
2 Compilers do not work that way
2 Compilers cannot work that way
2 Shift-reduce conflicts in parsing seem to be resolved using rand()
2 You require the compiler to be present at runtime
2 You require the language runtime to be present at compile-time
2 Your compiler errors are completely inscrutable
2 Dangerous behavior is only a warning
2 The compiler crashes if you look at it funny
2 The VM crashes if you look at it funny

96

2 You don’t seem to understand basic optimization techniques
2 You don’t seem to understand basic systems programming
2 You don’t seem to understand pointers
2 You don’t seem to understand functions

6 Challenges

Additionally, your marketing has the following problems:
2 Unsupported claims of increased productivity
2 Unsupported claims of greater “ease of use”
2 Obviously rigged benchmarks

2 Graphics, simulation, or crypto benchmarks where your code
just calls handwritten assembly through your FFI

2 String-processing benchmarks where you just call PCRE
2 Matrix-math benchmarks where you just call BLAS

2 No one really believes that your language is faster than:
2 assembly 2 C 2 FORTRAN 2 Java 2 Ruby 2 Prolog

2 Rejection of orthodox programming-language theory without justification
2 Rejection of orthodox systems programming without justification
2 Rejection of orthodox algorithmic theory without justification
2 Rejection of basic computer science without justification

7 Related Work

Taking the wider ecosystem into account, I would like to note that:
2 Your complex sample code would be one line in:
2 We already have an unsafe imperative language
2 We already have a safe imperative OO language
2 We already have a safe statically-typed eager functional language
2 You have reinvented Lisp but worse
2 You have reinvented Javascript but worse
2 You have reinvented Java but worse
2 You have reinvented C++ but worse
2 You have reinvented PHP but worse
2 You have reinvented PHP better, but that’s still no justification
2 You have reinvented Brainfuck but non-ironically

8 Conclusion

In conclusion, this is what I think of you:
2 You have some interesting ideas, but this won’t fly.
2 This is a bad language, and you should feel bad for inventing it.
2 Programming in this language is adequate punishment for inventing it.

97

98

Track 6

Protect yo’ shit

1. Cryptographically-Strong Hashing with Physics
James McCann and Fake Otherauthor

2. The Physics-Based Hashes of Twelve Really Good Ideas
Patent Troll

3. A modest proposal for the purity of programming
Robert J. Simmons and Tom Murphy VII

Keywords: the next 700 terrible programming languages, hyper-driven devices, types

4. Preparation-Hom as the ideal completion of a Hemorrhoidal category
Sitsin Cømfort and Minrøv Gørondt

Keywords: hemorrhoids, fistulads, co-fistulads, push outs

5. A Randomized Commit Protocol for Adversarial - Nay, Supervillain -
Workloads
Ben Blum

Keywords: two-phase, two-face, randomized algorithms, acid

6. Address space content randomization: exploit mitigation through data
randomization
Carlo Angiuli

Keywords: security, optimization, nondeterministic memory, lower is better

99

100

Cryptographically-Strong Hashing with Physics

James McCann∗

TCHOW

Fake Otherauthor

Justifying Plural Pronouns, Inc.

Figure 1: Using physical simulation to hash the string “SIGBOVK”. The resulting hash is 0xe5aefadd258abc59a22b23-

ab0a29723c37dac787decf8c46. The close-up view (right) highlights the complex interaction between the bytes in the

string.

Abstract

Good cryptographic hash functions must have the trapdoor

property. Often, this property is interpreted figuratively –

functions are constructed that are easy to run forward but

hard to invert. In this work, we follow the definition more lit-

erally, constructing a hash function wherein the data is sim-

ulated as it falls into a heap, as if dropped through a trapdoor

(e.g. Figure 1).

CR Categories: 4.2.O [Hashing]: Functions—Misc

1 Construction

Our hash function operates on between 1 and 256 bytes of

data, and this operation proceeds in three phases∗: first,

the data bytes are converted into rigid bodies by assigning

them shapes; second, the shapes are positioned in a simu-

lated world which guarantees that they interact; second-and-

a-half, the physical world is simulated forward in time; fi-

nally, positions of the bodies are read out of the simulation

and used to construct the digest value. Each of these steps is

described in more detail in the following subsections.

1.1 Byte-Shaping

Each byte is shaped by referring to the slightly modified

ASCII and Extended-ASCII tables shown in Figure 2. These

tables were copied from a canonical source [ASCII TABLE

1979], then modified to improve security.

∗e-mail: ix@tchow.com
∗Just like residential 220-volt power in the United States.

Figure 2: The modified ASCII tables used to shape each

byte in our simulation.

101

0: Read-Back(B):

1: hash← 0
2: for (body ∈ B):

3: hash← (hash >> (23 · 8))⊕ (hash << 8)
4: hash← hash⊕ state(body)

Figure 3: Pseudo-code for the read-back procedure which

converts rigid body position and velocity information into

the final hashed value.

All non-printing characters were replaced with printing vari-

ants†. Any identical characters were modified to be unique,

as identical characters lead to trivial collisions. Finally, char-

acter 255 was replaced with a pixelated version of the phrase

“u mad bro?” in order to “troll” potential attackers.

The character shape from these modified tables is used both

as collision geometry and to specify the mass and moment

of inertia of each byte.

1.2 Rigid Body Positioning

Once bytes have been transformed to rigid bodies, they are

arranged in a 16-wide grid above a v-shaped pit. The v-

shaped pit ensures that the bytes interact as they plummet

by forcing them to bounce into each-other. Because all char-

acters in the stream are guaranteed to interact, we don’t need

to pad short streams to guarantee high-quality results.

1.3 Simulation

The actual simulation of the system is handled through the

open source Box2D engine [Catto 2001]. Box2D is ideal

for this situation because it is a deterministic physics en-

gine; that is, no random values are used in the simulation,

the warm-starting of the solvers, or elsewhere. The engine is

set to run 500 steps of length 1/50th of a second.

1.4 Read-back

Once the simulation has been run, the final 24-byte hash is

constructed by reading back the computed position, angle,

velocity, and angular velocity of each body (all stored as 4-

byte floats) and xor-ing the values together, rotating the hash

by one byte as each body is read. Pseudo-code for this pro-

cedure is given in Figure 3.

2 Examples

We show the results of our hash function on several in-

puts. Hashing the string “SIGBOVIK” (Figure 1) takes only

105ms. A longer string consisting of bytes 0-255 (in order)

takes slightly longer – 10416ms (Figure 4. Longer inputs

than this must be chained, by using several runs of the hash

†Our chosen simulator does not handle noncorporeal bodies.

Figure 4: Hashing bytes 0-255 with our function.

The resulting hash is 0x63477ee68bafc0021d895f8-

baebd0f877d21965744a5c686.

function, each of which covers the previous hash value and

up to 232 bytes of new input. Examples of chained hash

computations are shown in Figures 5 and 6.

3 Conclusion

We have demonstrated that a literal trapdoor function is a

reasonable implementation for a trapdoor function.

Our simulation operates in 2D, but there is no reason that a

higher-dimensional physical simulation couldn’t be used to

perform a similar hash. This would provide more degrees of

freedom and – thus – a potentially longer digest value.

Our function takes on the order of 1 minute / kilobyte to

process data. This may seem slow, but it is actually quite

fast (considering that it can take hours to compute the SHA1

of similar data by hand). As our hash function is widely

adopted, we believe that special-purpose hardware or com-

pute accelerators (e.g. [nVIDIA 1981]) will be adapted to

support it adeptly.

References

ASCII TABLE, 1979. Ascii table.

http://www.asciitable.com.

CATTO, E., 2001. Box2D. http://box2d.org.

NVIDIA, 1981. PhysX. http://www.not-actually-the-url-

for-physics.fake.

102

Figure 5: Hashing Shakespeare’s Sonnet 105 by chaining together several hash computations. The final hash value (that is,

the hash computed in the last hash computation) is 0x4512b25b71e73d989b9f1802a75d46b2aa14354c155596a8.

The total computation time for the hash to be computed in the hash computation’s computation of the hash is 8048 + 8946 +
2634 ms.

Figure 6: Hashing Parenthetical Girls’ Survived by her mother, by chaining together several hash computations. The final

hash value of 0x4606c9903fa4576ab6f38bc87f5260cef9a27a30734e36fb is the only thing that differentiates it

from Shakespeare, as far as we’re concerned.

103

104

The Physics-Based Hashes of Twelve Really Good Ideas

Patent Troll∗

Corportation, Inc. LLC. Co.

Abstract

I’ve just had a thought! And another! Wow, there goes another one! This is great – I’m having so many thoughts. Instead

of putting in the sweat and tears and blood and potentially other, more objectionable, bodily fluids to actually develop them,

though, I think I’ll just write brief descriptions and then publish hashes of them.

Then I’ll hide over here in the metaphorical bushes, waiting for someone else to actually make something of the idea.

Then I’ll strike, like a spring-loaded snake.

Yessssss.

Everyday Health and Medicine

0xda675f8fa9c2b22b9f2a2a1bdd603a4438305fcde63840ad

Improving Personal Habits

0x59ea76bd12f401f08982388737677b439aaab50c4b4d97d4

Antarctic Salmon Fishery Management

0xa05308567b06ed79b0cbd8ba073370ea731dfa11a62d4003

Infinite Forward Temporal Redundancy Planning

0x5c5b7ac171fec54505aaf1b6bb4ddd3efcd65510d39c7c22

Government Regulation of Vice

0x4624f69784ae359ed5ac7eac18479d3110a0520757a5c121

Early Diversity Education Methodologies

0x75f0874f58549d8eb1ae0cc1bc3279592a6e989e15a241f1

Consumeristism Enhancement Protocols

0x83b674c9aaf7d4d5bcde5572051412de51273a3f02bcc118

Getting Those Darn Noisy Kids Off My Lawn

0x5c6587ac9e4f696711e597fecd90eba43eefb0fd1d570b6a

On the Personal Psychology of Pricing

0x447f9c404c83d49bd98f0e17a3d5de61e7ae1a1dcea1af5b

Exploiting the Workforce

0x2d52d030a0c5358862e1bbe11c1bf70e663aeaeb21882a60

Institutional Design Pattern Abstractions

0xccb55678453278ef9ce51e57a06d6c79dd08d9d33c983a54

Self-referential Regulation

0xf01514216cb822fab06cafe3a9af91648a2c85deeb6b7eb1

∗e-mail: ix@tchow.com

105

106

A modest proposal for the purity of programming

Robert J. Simmons

and

Tom Murphy VII

Terrible ideas permeate the world of programming languages, and the harm that these ideas do

is lasting. Academic research is intended to ameloriate some of this harm, but the connection

between academic PL research and industry grows ever more tenuous. This harms both realms.

Terrible ideas continue to hold back the benefits that computer science and software enginnering

seek to bring to the world. On the other side, we should note the demoralizing effect of this

tendency on academic PL research: why work on “practical” research if you will be universally

ignored?

The more principled among us might suggest that we continue to generate the best ideas and

see what happens, that the right ideas will win in time. The time for such velvet-glove approaches

is long past. This is a war, and it is time to use all the resources at our disposal. We propose a

method and apparatus to save the world from itself.

1. INTRODUCTION

Programming languages are fundamentally structured expressions of human
thought; they allow mere mortal humans like you and I to wield the power of
the fantastically complex and powerful computing devices that live in our phones,
coffee machines, and MacBooks. Like most other human enterprises, programming
languages are subject to fad and whim and fashion. Unlike most other human en-
terprises, the damage done by ill-considered ideas can be exceptionally lasting if the
languages incorporating these ideas are used to build big important systems. If you
dislike covariant generics, you should mourn that we will seriously be stuck with
Java’s covariant arrays until the heat death of the universe. If you do like covariant
generics, you are wrong, but nevertheless you should mourn that we will seriously
be stuck with Java’s invariant generics until the heat death of the universe.

The research community on programming languages, imperfect as it is, has usu-
ally seen the worst of these disasters coming in advance. However, in the diffuse
and surreally contentions community of programming languages research, attempts
to understand errors and contain their worst damage of bad ideas seem tend only
to solemnize their status as “well-understood features of modern programming lan-
guages,” ensuring their inclusion in the next great disaster.

We propose a radically different strategy: we will save the future from our follies
of today by setting our countenances towards discovering tomorrow’s bad ideas and
tasteless fads first. From a pure research perspective, this is the ultimate folly, not
that that’s ever stopped us before [6; 9; 5; 8; 1]. But the stakes are too high to
keep our hands clean. It’s time to bring out the big guns, and put our bad ideas to
work in the (regulatory) marketplace.

107

· Simmons & Murphy

1.1 Primer on patent law

Patent law in the United States traces back to Article 1, Section 8 of the United
States Constitution, which gives Congress the power “to promote the Progress of
Science and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries.” This is the same
portion of the constitution that copyright law stems from; however, in their core
functionality patent law and copyright law are quite different. Patents are par-
ticularly unusual in the degree of exclusivity they give: a patent gives the holder
a monopoly over the exercise of their patent for a period of time. Under current
U.S. law, this period of time extends 20 years from the date when the patent was
officially filed.

One view of the patent system is that it is a deal the public makes with an inven-
tor. Patents must provide enough information so that a skilled person can carry out
the claimed invention—this is called the sufficiency of disclosure requirement. So, a
patent gives you 20 years when you have absolute control over who is allowed to use
your invention, but this awesome power comes at a cost—you basically guarantee
that, in 20 years, everybody is going to be able to use your invention. Furthermore,
because patents are published right away, you give everybody else a head start on
innovating further based on your ideas—and if someone else comes with an innova-
tion that’s awesome enough, they can get a brand new patent that you can’t use.
And Science advances! If you don’t want to give your good ideas to anybody else
right away and/or if you think you could keep your awesome secret a secret for
more than 20 years, then it’s to your advantage as an inventor not to make this
trade, and have your invention be a trade secret rather than a patented invention.

That, at least, is the civics book lesson for how patents work, but the patent
system has had some difficulties coping with the complex nature technological in-
novation in the modern world. We will briefly describe two phenomena [2] that
have arisen around patent law in the context of modern information technology:
the standardization of reasonable and non-discriminatory licensing terms, and the
scourge of patent trolls. Both of these phenomena [2] are relevant to our method
and apparatus for saving the world, The /dev/urand Foundation, described in
Section 3.

1.1.1 Reasonable and non-discriminatory terms. Standards bodies have to work
around the fact that many standards inevitably are covered by patents. Standards-
setting organizations allow for patented technologies to be used in standards, but
require that the patent holder provide Reasonable and Non-Discriminatory licens-
ing options, or RAND. This term isn’t terribly well defined, but the intent is to
ensure that anyone can implement the standard, by paying a fair licensing fee to
the patent holder until the patent expires, and is generally good for technology.
To see why this is important, consider a standards body with representatives

from 57 companies all working on a new standard for Carrier Pigeon Message
Formatting modernizing RFC 1149. BBN Labs has a new patent on avian foot
massage technology using cardboard [3]. Without revealing this fact to the consor-
tium, BBN Labs influences the standards body to incorporate the requirement for
post-packet-delivery corrugated massage as a quality assurance mechanism. Then,
after waiting for the standard to be incorporated into every soda machine in Amer-

108

A modest proposal for the purity of programming ·

ica, BBN Labs can demand arbitrary fees from the users and distributors of their
massage-enhanced pigeon packet technology. If people refuse to pay, they can
be legally barred from using the (standards-backed) technology they have already
bought and paid for.

RAND licensing is aimed at avoiding this scenario. When RAND terms are
required, then BBN Labs still has something to gain from the adoption of their
patented technology in the standard, but they have less to gain from concealing this
from their standards-body partners. RAND is not a solution to patent-encumbered
standards, merely a way to make them work in the real world. But, critically,
RAND licensing is not itself a fundamental part of patent law—if BBN Labs are
not a part of the standards committee, then they can still wield their patents despite
the standards committee members being bound by RAND terms when it comes to
their own patented inventions.

1.1.2 Patent trolls. The interrelated nature of technological innovation, and the
frequency with which fundamental ideas spring into existence in multiple places at
the same time, has led to the prevalence of patent trolls. The term is generally
defined as people and companies that buy lots of patents, wait for people to start
using the ideas contained therein naturally, and then extort the maximum rents
possible from the users.

Patent trolls generally wield two types of patent: The specific patent that is
nearly certain to get rediscovered in time, and the general, overly-broad patent
that basically apply to everything ever, like the people who freakin’ patented linked

lists in freakin’ 2004 [11] or the patent trolls currently suing all your cell phone
makers because they let you select emoticons from a list [7]. The latter form of
troll patent is often cited as evidence for the necessity of patent reform, as, despite
the fact that these patents are usually unenforceable, the mere threat of patent
litigation can be used to extract rents from other innovators and have a chilling
effect on innovation overall.

1.2 The chillaxing effect

Our method and apparatus was inspired by some person on Twitter [4], though we
stress that this does not count as prior art. As the random Twitter-person observes,
it’s a good thing that the fundamental good ideas in computer science aren’t covered
by patents, because they are useful for helping droves of other computer scientists do
their work. But what if the bad ideas in computer science were covered by patents?
It might prevent droves of other computer scientists from doing their work. This
chillaxing effect, effectively wielded, could simultaneously get the attention of the
largest corporate players in programming languages and software engineering and
refocus the efforts of academic research in directions that have not been meticulously
chillaxed.
I mean, we tried to come up with a bad idea a couple of years ago [8], and then

we learned at the ICFP in Baltimore that Milner had actually come up with the
same bad idea in one of the early ML implementations, before replacing it with the
less dumb idea later on. Milner could have patented this bad idea when he came up
with the better idea, thus giving the forces of sanity with a powerful tool against
the next person who tries to implement the bad idea and stop there.

109

· Simmons & Murphy

2. EXAMPLES

Coming up with bad ideas for programming languages is very easy. The challenge is
to come up with ideas that are broad enough to cover many possible instantiations
of the idea, specific enough to be patentable, and likely to be encountered in real up-
start languages, where they can be stamped out. As usual in science, our approach
is stochastic; we simply generate as many patents as we can. Many patents will
never be useful in the fight against bad programming languages, but these cause
no harm.1 As a demonstration, this section contains a list of bad programming
language ideas that we came up with, no sweat. Cringe away:

(1) The input programs are written as recipes

(2) You just give examples of what a function should do in certain circumstances,
and when it encounters an input that is not specified it. . .
(a) . . . linearly interpolates between known answers
(b) . . . uses genetic programming to come up with a short program that satisfies

your constraints and also works on this input
(c) . . . pauses and waits for the programmer to finish the program
(d) . . . asks the user what the answer should be, adding it to the database
(e) . . . searches for code on the internet that meets the example-based specs,

and prompts the programmer or user as to which one should be used
(f) . . .

(3) Input programs are written in musical notation

(4) Input programs are graphical diagrams written in UML, XML, flow charts, as
maps, circuits, or two-dimensional ASCII

(5) Programs are written in three-dimensional layered text, perhaps in different
colors and with alpha channels, to specify interleaved threads

(6) Every program is a substring of the lorem ipsum text

(7) Everything in the language is just a. . .
(a) . . . string literal, including keywords
(b) . . . capital i or lowercase L

(c) . . . continuously differentiable probability density function
(d) . . . hash table mapping hash tables to hash tables
(e) . . .n-tuple
(f) . . . finite permutation
(g) . . . 7-bit integer
(h) . . . coercion
(i) . . . rule
(j) . . . exception, except exceptions; those are normal

1Informal studies in CMU’s Principles of Programming group have shown preliminary evidence

that bad programming languages can actually cause physical harm among those that have estab-

lished taste and predisposition to logic. Observed effects include facepalms and grimaces, nausea,

fatigue, emotional lability (uncontrolled weeping or laughing), Bobface (first identified by William

J. Lovas), and dry mouth. Other harm is more direct, such as lacerations or bruises by being

throttled by academic advisors. If this proves to be a problem, simple safety measures such as

biohazard suits, coordinate-transform and other reversible mind-encryption systems, or simply

employing the inadverse, may be used.

110

A modest proposal for the purity of programming ·

(k) . . . arbitrary-precision rational number
(l) . . . priority queue, Fibonacci heap, b-tree, pixel, regular expression,

presheaf, commutative diagram, metaphor, monad
(m) . . .MP3
(n) . . . SMS
(o) . . .mutex
(p) . . . non-uniform rational b-spline

(8) Programming languages for children or the elderly

(9) Programming languages based on telling stories

(10) Programming languages based on architecture, org charts, HTML, CSS, mil-
itary strategy, or airplanes

(11) Instead of stack-based control-flow, use queue-based, tree-based, dataflow-
network-based

(12) 4/3 CPS

(13) Every value is represented as the 256-bit content hash; elimination forms are
distributed hashtable lookups; revision control is built into the concrete syntax
of the language

(14) Unification always succeeds, forking the program with each of the two expres-
sions to be unified substituted in that position; only if both fail does unification
fail

(15) Realize every program you wish to write as actually the test case for a metapro-
gram that generates the program

(16) Language with only 20 keywords, one for each of the SPEC benchmarks

(17) Language with only one keyword, whose semantics implements a compiler for
the language itself

(18) call-ac, call with all continuations

(19) Second-class data: All data must be top-level global declarations, and can’t
change. Functions are first-class.

(20) Gesture-based concrete syntax

(21) Programs are realized as dashboards with knobs, buttons, and cable connec-
tions between them

(22) No matter what, the program keeps going, attempting to repair itself and keep
trying actions that fail

(23) Programs are abstract geometric shapes

(24) Type has type . . .
(a) type
(b) int
(c) kind
(d) type → type
(e) object
(f) null

(25) To protect against the problem where sometimes someone called a function
with an empty string, “emptyable” types, which include all values of the type
except the “empty” one ("", 0, NaN, 0.0, nil, {}, false, etc.).

111

· Simmons & Murphy

(26) To work around the global errno problem, every value of a type includes the
possibility of integers standing for an error code

(27) Lazy natural (co-)numbers, where the output of a numeric program is only a
lower bound that may get higher as it continues computing

(28) A language where the compiler is integrated into the language as a feature,
which takes first class source code to first class compiled binaries, within the
language

(29) There’s a global registry, in the world, and whenever a function returns, you
check to see if any function in the world has registered a hook to process it

You see how easy this is? If you are a programming language expert you might
even have thought of some languages that already use these ideas. If so, this is

all the more reason to support our foundation, because had we started earlier, we
could have saved the world some trouble!

It is worthwhile to try to acquire patents that are very broad, since these can be
used to attack almost any language, even one with unanticipated bad ideas. For
example:

2.1 Method and apparatus for attaching state to an object

This patent describes a method and apparatus for attaching state to objects in
computer programs. The invention consists of a symbolic program running in com-
puter memory and an object (which may be a value, hash table, list, function,
binary data, array, vector, n-tuple, presheaf, source file, class, run-time exception,
finite or infinite tape, or isomorphic representation). The claims are as follows:

1. A system for attaching state to the said object

2. The method of claim 1 where the state is binary data

3. The method of claim 1 where the state is an assertion about the behavior of
the object

4. The method of claim 1 where the state is itself an object

5. The method of claim 4 where the state is the same object, or some property
therein

6. The methods of claims 1–5 where the apparatus of attachment is reference
6.a. Reference by pointer
6.b. Reference by index
6.c. Reference by symbolic identifier
6.c. Representations isomorphic to those in claims 6.a.–6.c.

7. The methods of claims 1–5 where the apparatus of attachment is containment

(etc.)

112

A modest proposal for the purity of programming ·

2.2 Method and apparatus for determining the control flow of programs

This patent describes a method and apparatus for determining the control flow
in computer programs. The invention consists of a symbolic program running in
computer memory, with a notion of current and next state (which may be an in-
struction pointer, index, expression to evaluate, continuation, value, covalue, stack,
queue, execution context, thread or thread pool, process image, cursor, tape head,
phonograph stylus, or isomorphic representation). The claims are as follows:
1. A system for determining the next state from the previous state

2. The method of claim 1, where the determination includes the contents of
the program’s memory

3. The method of claim 1, where the determination includes the current state

4. The method of claim 1, where the determination includes external inputs

5. The method of claim 1, where the determination includes nondeterministic
factors

6. The method of claim 1, where the determination is fixed ahead of time

(etc.)

It is hard to imagine any programming language that would not be covered by
both of these patents. Many perfectly sensible languages would be impacted as
well, but this is not a problem: We can choose to license the patent to languages
that we judge to be tasteful, perhaps imposing additional contractual restrictions
on the licensees, even regarding things not covered by our patent pool, such as
our personal preferences about indentation style and capitalization of identifiers.
We can easily develop hundreds of such applications and again use the stochastic
method to ensure a high likelihood of having one granted.

3. THE /DEV/URAND FOUNDATION

The patents shall be administered by a new non-profit foundation, known as The
/dev/urand Foundation. The organization is named for the RAND concept of
patent licensing described in Section 1.1.1. The /dev/urand Foundation differs in
that its licensing is Unreasonable and Not-not Discriminatory: We do not offer
licenses for any amount of money or other consideration. Our patents on bad
ideas will simply never be licensed, enjoining anyone from using those ideas for
the duration of the patents. Our over-broad patents will be licensed in a blatantly
discriminatory fashion, only to languages that we think are tasteful. We might
even withhold licenses when an individual has done something that we just don’t
like, like has a name that’s hard to spell, or didn’t accept one of our papers to a
prestigious conference. This is totally legal.
We are going up against some of the biggest companies in the world, such as

Larry Wall and Guido van Rossum, however, and so we anticipate that specific
patents on bad ideas will be more powerful than potentially indefensible over-broad

113

· Simmons & Murphy

patents. However, there is certainly a role for both kinds of patent trolling. The
point is to strike fear into the hearts of would-be hobbyists and academics, with
the expectation that this would be generally bad for the programming language
ecosystem, which we can all agree is pretty much up shit’s creek without a paddle.

Lawsuits: coming to a workshop on reinventing the wheel near you.

4. CONCLUSION

We have presented a plan for saving programming from the scourge of clumsy
innovation. Surely the plan is distasteful, and perhaps you think the world would
be a better place if the negative effects of out-of-control patent law—whether they
be chilling (bad) or chillaxing (awesome)—were curtailed with the limitation or
elimination of software patents. Maybe so! But the problem with refusing to let
the ends justify the means is that when you do that the other team ends up with

more means. And we refuse to settle for average.
We will fight fire with whatever firefighting means we can get our fricking hands

on. The future of programming depends on it!

REFERENCES

[1] Blum, Benjamin (ed). “Proceedings of SIGBOVIK 2011.” ACH Press. Pittsburgh, Pennsyl-

vania. 2011.

[2] Do do dododo. “Phenomena.” Do do do do. “Phenomena.” Do do dododo dododo dododo

dododododo do do do do do.

[3] Ebert, Michael A. “Corrugated recreational device for pets.” Patent Application 11/757,456.

Filed June 4, 2007.

[4] Gorman, Jason. (jasongorman). “We should think ourselves very lucky that Alan Turing didn’t

patent “a single machine which can be used to compute any computable sequence”” March 13,

2012. Tweet.

[5] Jones, Laurie A (ed). “Proceedings of SIGBOVIK 2009.” ACH Press. Pittsburgh, Pennsylvania.

2009.

[6] Leffert, Akiva and Jason Reed (eds). “Proceedings of SIGBOVIK 2007.” ACH Press. Pitts-

burgh, Pennsylvania. 2007.

[7] Nelson, Jonathan O. “Emoticon input method and apparatus.” Patent 7,167,731 B2. Granted

January 23, 2007.

[8] Martens, Chris (ed). “Proceedings of SIGBOVIK 2010.” ACH Press. Pittsburgh, Pennsylvania.

2010.

[9] Simmons, Robert J. (ed). “Proceedings of SIGBOVIK 2008.” ACH Press. Pittsburgh, Penn-

sylvania. 2008.

[10] Simmons, Robert J., Nels E. Beckman, and Dr. Tom Murphy VII, Ph.D. “Functional Perl:

Programming with Recursion Schemes in Python.” In SIGBOVIK 2010.

[11] Wang, Ming-Jen. “Linked list.” Patent 7,028,023. Granted April 11, 2006.

114

Preparation-Hom as the ideal completion of a

Hemorrhoidal category

Sitsin Cømfort and Minrøv Gørondt

Institute for Advanced Sitting

Denmark

Abstract

Hemorrhoidal categories are a source of considerable pain for many

a theorist who has found himself incapacitated by this class of abstract

nonsense. In this work we characterize Preparation-Hom, which repre-

sents the ideal completion of a hemorrhoidal category, and which should

therefore provide immediate relief for those classes of problems involving

hemorrhoidal categories.

1 Introduction

Hemorrhoidal categories first emerged from the exploration of alimentary canal
structures in the early part of the 20th century [2]. Formed by the enrichment
of a rectal category [1] with a set of so-called prolapsed functors [4], the dis-
covery of which has resulted from years of strenuous labor, and has resulted in
considerable difficulty in passing beyond this mathematical obstruction. While
controversial, the prevailing view of hemorrhoidal categories is that they were
originally developed in categories with too many push outs.

Preparation-Hom represents a novel advance in giving a formal treatment of
hemorrhoidal categories, and therefore represents a significant contribution of
the present work. In Section 2 we demonstrate the use and potential applications
of Preparation-Hom to hemorrhoidal categories, and give a proof of correctness.

2 Correctness

We characterise the correctness of Preparation-Hom in Fig. 1. The diagram
will commute for any category that is hemorrhoidal, and the hemorrhoidal end-
ofunctor should be absent after applying the Preparation-Hom transformation.

115

116

3 Future Work

The authors intend to characterize the applicability of Preparation-Hom to both
fistulads and co-fistulads[3].

4 Conclusion

We are so very sorry. Really. Very, very sorry.

References

[1] Seymour Butts. The Handbook of Applied Procto-logical Mathematics.
Springer, 1976.

[2] W Lovas. Poop Search in Laxative Logic. In SIGBOVIK 2009, 2009.

[3] (redacted). The Children’s Illustrated Guide to Fistulads. (Unpublishable),
1994.

[4] R Santorum. I can prolapse functors and so can you! Anals of Mathematics,
2012.

117

118

A Randomized Commit Protocol for Adversarial -

Nay, Supervillain - Workloads

Ben Blum (bblum@andrew.cmu.edu)

2011.04.01

Abstract

We propose a new algorithm based on binary random number generation for distributed atomic

transaction commit, called the Two-Face Commit Protocol. Rather than relying on multiple servers

collaboratively voting, as does the current industry standard algorithm, the Two-Face protocol relies on

simple coin flips. We show that our algorithm is more robust in the case of adversarial environments,

and therefore is more appropriate for supervillain-level workloads.

1 Introduction

Distributed atomic commit is a well-known problem involving multiple participating servers attempting

to agree on whether to accept a change. This mandates careful communication among the servers, to

ensure that all servers agree at the end on whether the change was accepted or rejected.

The current industry standard algorithm, the Two-Phase Commit Protocol[Raz95], uses two distinct

phases in which all servers communicate with a master server, voting on whether to commit or roll

back. This is expensive, for it requires excessive multidirectional network traffic during both phases. It

is also much more prone to failure, since a single “no” vote from any server will cause the transaction

to abort. Furthermore, given potential server crashes, the Two-Phase algorithm may sometimes need

manual intervention to restore the collective state machine.

In this paper, we present a commit protocol with none of these downsides. Our algorithm, called the

Two-Face Commit Protocol, relies on a much simpler coin-flipping mechanism. In essence, the master

server flips a coin to decide whether you get to keep your data or lose it. In contrast with Two-Phase,

Two-Face is less prone to state corruption, and also gives more predictable performance in the face of

unpredictable, possibly antagonistic, machine failures.

2 Algorithm

(a) Constantius II; Rome, ca. 350 (b) Kronor; Sweden, ca. 1992 (c) Toonie; Canada, ca. 2005

Figure 1: As seen in algorithm 2, the Two-Face Commit Protocol is parameterized over the type of coin, for
added flexibility[Ran].

We present the algorithms for both the conventional protocol and our new protocol.

Note that the first line of the new algorithm has no overall effect, and is presented for the sake of

contrast. We omit it for performance reasons in our implementation.

119

Algorithm 1 The conventional Two-Phase Commit Protocol.

function Phase1(servers)
x←True

for all s ∈ servers do

x← x∧ReceiveVote(s)
end for

return x

end function

function Phase2/success(servers)
for all s ∈ servers do

NotifySuccess(s)
end for

Commit()
end function

function Phase2/fail(servers)
for all s ∈ servers do

NotifyFailure(s)
end for

RollBack()
end function

function TwoPhase(servers)
success←Phase1(s)
if success then

Phase2/success(s)
else

Phase2/fail(s)
end if

end function

Algorithm 2 The new Two-Face Commit Protocol.

function TwoFace(servers, coin)
success←Phase1(s)
success←Flip(coin)
if success then

Phase2/success(s)
else

Phase2/fail(s)
end if

end function

120

121

Two-Face algorithm. This is not surprising, considering the law of large numbers.

Next we investigate the success rate of the two algorithms with increasing rates of spontaneous server

failures. We configured each of the participating servers in our trial to artificially crash with a certain

probability, and produced the following graph.

Figure 4: Success rate of Two-{Fac,Phas}e with increasing server failure rates

Here we see that our algorithm is much more resilient against spontaneous participant failure than

the industry standard algorithm.

4 Future Work

To address the deficiency presented in figure 3, we plan to investigate the performance of the Two-Face

algorithm when using weighted coins, and perhaps even double-headed and double-tailed coins.

We also anticipate that the Two-Face Commit Protocol will be employed in an upcoming work that

will publish this summer[NNG12]. We plan to analyze the effectiveness of our algorithm in this real-world

environment.

5 Conclusion

We have presented the Two-Face Commit Protocol, a randomized algorithm for atomic committing of

distributed transactions using coin-flipping. The algorithm is designed to be useful with highly antago-

nistic workloads, such as having acid thrown in your face, ACID thrown in your filesystem, or being tied

up in a burning building in a room full of oil drums.

References

[NNG12] Christopher Nolan, Jonathan Nolan, and David S. Goyer. The dark knight rises. In Proceedings

of the 3rd Symposium on Superhero Principles, SOSP, Summer 2012.

[Ran] Random Dot Org. Coin flipper. http://www.random.org/coins.

[Raz95] Yoav Raz. The dynamic two phase commitment (d2pc) protocol. In International Conference

on Database Theory, pages 162–176, 1995.

122

Address space content randomization:

exploit mitigation through data randomization

Carlo Angiuli

March 19, 2012

1 Introduction

Address space layout randomization [5] is a popular
technique for mitigating buffer overflow vulnerabili-
ties in software. By randomizing the memory layout
of software when it is loaded into memory, and addi-
tionally prohibiting memory pages from being both
writable and executable, an attacker is limited to
guessing the address of any already-loaded code his
or her exploit executes.

However, these security mechanisms do not af-
fect the layout of data on the stack, permitting an
attacker to access return pointers, and therefore,
quickly guess the memory offset of libc [6].

Notice that this attack is possible only because
memory content often contains memory addresses,
thus leaking information about the randomized lay-
out. Furthermore, we observe that memory is sus-
ceptible to replay attacks, because it maps addresses
to content in a deterministic fashion [3].

We propose a novel method for mitigating memory-
related program exploits by randomizing the content

stored at addresses in memory, which we call Ad-
dress Space Content Randomization (ASCR). This
provides many benefits over previous vulnerability
mitigations:

1. By randomizing the contents of memory, we
supercede the need to randomize memory ad-
dresses via ASLR.

2. Our technique can be implemented in a per-
application fashion, rather than relying on kernel
facilities.

3. Applications which run under ASCR are neces-
sarily more robust, because they cannot exploit
memory replay attacks by expecting determinis-
tic memory behavior.

4. We drastically improve the performance of most
applications by removing the need to access
memory.

2 Implementation

We discuss our implementations of static and dy-
namic ASCR as LLVM optimization passes, and the
security and performance tradeoffs between these im-
plementations.

2.1 Static ASCR

In static ASCR, all memory reads are replaced by
random numbers generated at compile time. As a re-
sult, attackers who only have access to a program’s
source code cannot craft successful exploits, as they
cannot determine what behavior the program will
have when compiled.
As with ASLR, programmers must ensure that

their software works correctly in the presence of
ASCR. In this case, local variables cannot be assumed
to hold any particular value, although they are guar-
anteed to hold the same value across multiple invoca-
tions of a program. These strict guidelines promote
a healthy feeling of mistrust toward one’s compiler,
which in turn, promotes more robust, secure software.
It is worth noting that ASCR requires no ker-

nel support, unlike ASLR, and thus can be adopted

123

immediately—any programmer can immediately be-
gin shipping code which takes advantage of our strong
security guarantees.

We have implemented an LLVM optimization pass
which performs static ASCR conversion on any
LLVM bitcode, through the following transforma-
tions:

1. Load instructions are robustly replaced by ran-
dom numbers.

2. Store instructions are removed, as they leak in-
formation.

By following this by standard compiler optimizations,
we achieve surprisingly large speedups and code size
reductions in a variety of benchmarks.

2.2 Dynamic ASCR

In dynamic ASCR, all memory reads are replaced by
random numbers generated at runtime. As a result,
even attackers who have access to a program’s binary
cannot craft successful exploits, as runtime behavior
is unpredictable.

We use libc’s rand function to generate random
numbers, reseeding it with the time at the start of ev-
ery program. This eases debugging, as programmers
can reproduce bugs by resetting their system clock
each time they run software with dynamic ASCR.

Dynamic ASCR relies only on the presence of a
random number generator, and can again be im-
plemented without additional kernel support. Our
LLVM optimization pass is similar to the static
ASCR pass:

1. Load instructions are robustly replaced by calls
to rand.

2. Store instructions are removed, as they leak in-
formation.

We achieve greater security than static ASCR, but
at the cost of performance—the dynamic nature of
this feature reduces the optimization opportunities
available afterwards.

3 Evaluation

Our present implementations of ASCR randomize
only data, but we anticipate extending it to ran-
domize code as well. This generalized form of ASCR
entirely supercedes the need for ASLR; while ASLR
makes it difficult for attackers to obtain pointers to
protected regions of memory, ASCR simply decou-
ples those pointers from access to any program code
or data.
Our observation is that all memory-related attacks

hinge upon the association of pointers with data in
memory, so by stopping this attack vector entirely,
we secure software against a very large class of vul-
nerabilities.

3.1 Performance

As a simple integer benchmark, we implemented the
industry-standard recursive algorithm [1, 1] for Fi-
bonacci numbers:

int fib(int x) {

if (x == 0)

return 1;

else if (x == 1)

return 1;

else

return fib(x-1) + fib(x-2);

}

and computed fib(50). We compiled the same fib

function three ways: with static ASCR (followed by
standard optimizations), dynamic ASCR (plus opti-
mizations), and clang -O2 without ASCR. We com-
pare the performance and values of these three im-
plementations in Figures 1 and 2.
Under static ASCR, the fib function is compiled

to the single instruction:

ret i32 1957747793

as compared to the 13 instructions required in the
non-ASCR implementation. As shown in Figure 1,
this optimization results in drastically improved per-
formance. By removing the compiler’s dangerous as-
sumption that mutations to local state are persistent,

124

we manage to optimize fib so that it executes in con-
stant time—a major improvement.
Under dynamic ASCR, each reference to x is re-

placed by a call to rand. The recursive fib calls
cannot be optimized away, and are not, in general,
called with numbers smaller than x. In particular,
under ASCR it is faulty to assume that x − i < x.
Thus, the algorithm very quickly runs out of stack
space and terminates, again much more quickly than
without ASCR!
While detractors argue that dynamic ASCR makes

it difficult to analyze the behavior of software, we be-
lieve that this is due simply to a lack of understanding
of the behavior of pseudorandom number generators.
If a user desires their application to not segfault, or
return a particular number, they need only determine
to what to set their system clock.
As with all systems performance analyses, we ac-

knowledge a need to adequately address the long tail
distribution [4]. The author believes the long tail dis-
tribution has favored the colobus monkey, to which
Fortune herself has distributed a marvelous tail of
approximately 25 inches of length [2].

4 Conclusion

We have shown that address space content random-
ization is a powerful exploit mitigation technique
which can be applied to programs at compile time
without additional runtime support. ASCR is able
to defeat a large class of exploits which use replay
attacks on memory, i.e., by relying on any memory
cells to contain non-random information.
We hope to generalize our current work by also

randomizing code in memory, instead of limiting our-
selves to data. This would entirely remove the need
for ASLR, by rendering code pointers—and indeed,
code—useless in all situations. The author is confi-
dent that full ASCR, as described above, would in
fact successfully defeat all software exploits.
We believe that the increased effort needed to

develop applications which exhibit desired behavior
with ASCR is balanced by the security and perfor-
mance afforded by the ASCR regime. In our ex-
periments, when applied in tandem with traditional

compiler optimizations, ASCR results in massively
decreased performance time and runtime values.

References

[1] Angiuli, C. Address space content randomiza-
tion: exploit mitigation through data random-
ization. In Proceedings of the 6th ACH confer-

ence on Special Interest Group on Harry Qwerty

Bovik (Pittsburgh, PA, USA, 2012), SIGBOVIK
’12, ACH.

[2] Brookfield Zoo. Field guide – colobus
monkey. http://www.brookfieldzoo.org/

pagegen/htm/fix/fg/fg_body.asp?sAnimal=

colobus+monkey.

[3] Eckhardt, D. Virtual memory. http:

//www.cs.cmu.edu/afs/cs/academic/class/

15213-s08/www/lectures/class16.pdf.

[4] Maurer, M. The effect of the long-tail distri-
bution on system performance evaluations. In
Proceedings of the 6th ACH conference on Special

Interest Group on Harry Quechua Bovik (Pitts-
burgh, PA, USA, 2012), SIGBOVIK ’12, ACH.

[5] PaX Team. Pax address space layout random-
ization (ASLR). http://pax.grsecurity.net/

docs/aslr.txt.

[6] Shacham, H., Page, M., Pfaff, B., Goh, E.-

J., Modadugu, N., and Boneh, D. On the
effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Com-

puter and communications security (New York,
NY, USA, 2004), CCS ’04, ACM, pp. 298–307.

125

Figure 1: Performance of fib(50) using static/dynamic/no ASCR. (Lower is better.)

Figure 2: Value of fib(50) using static/dynamic/no ASCR. (Lower is better.)

126

	Frontmatter2
	Mainmatter3

