
The Association for Computational Heresy

presents

A Record of the Proceedings of

SIGBOVIK 2013

The seventh annual intercalary robot dance party in celebration
of workshop on symposium about Harry Q. Bovik’s 26th birthday

Carnegie Mellon University
April 1, 2013

i

ii

SIGBOVIK 2013
Message from the Organizing Committee

It is with great pleasure, honor, enjoyment, cheer, verve, rapture, amazement, shock, and fleet-

ing disgust that we present to you the proceedings of the Seventh Annual Intercalary Workshop

about Symposium on Robot Dance Party of Conference in Celebration of Harry Q. Bovik’s (26)th
Birthday. This has been a record breaking year in innumerably many ways:

1. Seven is, to our knowledge, the highest annuality of this workshop.

2. The record for most submission with effectively the same name was broken this year.

3. We had our fewest organizing committee coups. Zero!

4. We have the longest SIGBOVIK paper ever, weighing in at a mighty twenty-two pages.

5. We tied our record for most records tied or broken in a single year. (This record is only

speculative.)

However this year, for all its ups, was not without its downs. We got off to a rocky start when

the entire organizing committee neglected all work in expectation of the apocalypse on December

21, 2012. Once that turned out not to be an issue, the entire organizing committee partied through

January and was hungover through February on homeward flight. But once March rolled around,

we were good to go! And go we did.

How to use these proceedings

Sure you could read them (see next section), but have you ever considered that these proceedings

could also work to: fix a wobbly table, wrap a fish, hold down papers, invalidate a hypothesis,

fan yourself, fan others, wipe grime from your forehead, wipe grime from your bottom, wipe

that grin off your face, polish steel, flavor coffee, steal polish, self-flagellate, break a window,

underestimate the value of a really fine set of encyclopedias, scrub a duck, build a fragile parachute,

reflect your inner turmoil, provide kindling for a fire, shade a lizard, be a great success (though

perhaps overburdened with symbols in – I would say – the surrealist tradition), provide catharsis,

position your keyboard or monitor ergonomically, fill a bookshelf, validate your self-image, expose

conspiracies, break the bank, or provide eternal life?

iii

How to read these proceedings

SIGBOVIK is a wide-ranging conference, at least as moreso this year than other years; therefore,

for your browsing convenience, the papers this year have been divided into six tracks.

Tracks may be read separately, together, or – special this year – in time-trial mode, in which

you will not be reading against other scientists but (rather) against the clock. Read each track

for three laps, and try to beat your best time, or compete against your friends using our social

integration feature. Simply sign in below to enable leaderboards, tap-to-tweet, live bookmarks,

pop-up notifications, and more:

By signing in with your facebook or twitter account you empower the ACH and its designated subsidiaries, lackeys, thugs, and/or flunkies to make important life decisions on your behalf, including
– but not limited to – hair color, style of dress, accent, and what you had for lunch yesterday. The content of these decisions will be reported in tweets or postings reputed to come from you. ACH
may, at its sole discretion, decide to notify you in advance of these postings. In any event, you will will be required to conform to the content of these declarations within twenty-four hours of their

appearance or risk confusing your friends. If you choose not to comply, a lifestyle/fashion strike team may be deployed. ACH is not liable for anything, ever. Not our chairs, not our problem. 1

Massage from the organizing committee

Gosh, you look tense. Let us sooth those muscles for you. Simply rub this proceedings on your

back in slow circles. Doesn’t that feel better?

1Thanks http://www.komodomedia.com/blog/2009/06/sign-in-with-twitter-facebook-and-openid/

iv

SIGBOVIK 2013 Paper Review
Paper 0: Message from the Organizing
Committee

L. Johnson
Rating: 4 (strong accept)
Confidence: 1/4

This is a good paper. But I don’t get the bit about homeward flight.

v

Table of Contents

Track 1: Contemporary Issues in Politics and Law

1. SIGBOVIK License Agreement (excerpt) . 2

2. Redistributive Version Control Systems .3

3. Psychology in Response to Presidential Poles . 8

Track 2: Harry Bovik’s Research Calculus

1. The Randomly-Scoped Lambda Calculus . 22

2. Recovered Mathematical Journal . 29

3. MacLeod Computing: A New Paradigm for Immortal Distribution . 33

4. The (∞,1)-Accidentopos Model of Unintentional Type Theory
(extended abstract) . 37

Track 3: Artificial Stupidity

1. You Only Learn Once: A Stochastically weighted AGGRegation Approach to
Online Regret Minimization . 43

2. I Lost The Game, and So Will You: Implications of Mindvirus Circulation in a
Post-Singularity World . 47

3. Fandomized Algorithms and Fandom Number Generation . 51

Track 4: Computer Vision(aries)

1. Optimal Coupling and Gaybies . 54

2. Cat Basis Purrsuit . 59

3. A Spectral Approach to Ghost Detection . 64

vi

Track 5: Productivity and Meta-Productivity

1. Really Amazing New Idea . 70

2. METHOD AND APPARATUS FOR PRESSING SPACEBAR . 75

3. METHOD AND APPARATUS FOR PUSHING SPACEBAR . 76

4. Find a Separating Hyperplane With This One Weird Kernel Trick
(sponsored contribution) . 77

5. On n-Dimensional Polytope Schemes . 78

6. DUI: A Fast Probabilistic Paper Evaluation Tool .82

7. Paper and Pencil: a Lightweight WYSIWYG Typesetting System . 88

Track 6: Time Travel, Space Travel, and Other Fun Games for Children

1. A Proposal for Overhead-Free Dependency Management with Temporally
Distributed Virtualization . 92

2. The n-People k-Bikes Problem . 96

3. The Problem of Heads of a Fighting Force from Long Ago . 101

4. duoludo: a game whose purpose is games . 111

5. The First Level of Super Mario Bros. is Easy with Lexicographic Orderings and
Time Travel . . . after that it gets a little tricky. 112

vii

Track 1

Contemporary Issues in Politics and Law

1. SIGBOVIK License Agreement (excerpt)
Ix Tchow, Ph.D.

2. Redistributive Version Control Systems
Karlo Angiuli and Frederick Engels
Keywords: redistribution, communism, version control

3. Psychology in Response to Presidential Poles
Timothy Broman
Keywords: statistics, politics, election, cognitive dissonance, confirmation bias

�

An Excerpt from:

The SIGBOVIK License Agreement (Proposed)∗

1 Definitions

(...)

Y. If this clause is said to apply to any other clause (hereafter, the Subject), it will be as though the Subject shall have no

effect as originally written, and the following will pertain in its stead:

(a) Let the clause following this one be known as the Target clause, and replace it with the following subclauses:

i. This clause shall have the same force as the Subject clause.

A. This clause shall have the same force as the Target clause.

B. This clause shall have the same force as the Target clause.

(b) Let the clause following this one be known as the Target clause, and replace it with the following subclauses:

i. This clause shall have the same force as the Subject clause.

A. This clause shall have the same force as the Target clause.

B. This clause shall have the same force as the Target clause.

(...)

7 Agreement

1. All parties must read and understand the content of this agreement.

(...)

5. Let the term Binding Year refer to 2013, unless redefined in subsequent clauses. The following subclause is subject to

provision 1.Y:

(a) This agreement shall be binding in the Binding Year. In addition, in any subclauses of this clause, let the term

Binding Year refer to the year following the current Binding Year.

(...)

∗As prepared by ix@tchow.com , PhD.

�

Redistributive version control systems

Karlo Angiuli Frederick Engels

March 18, 2013

Abstract

A spectre is haunting Github; the spectre of communism. Distributed
version control has led to a new era of free software, but commit inequal-
ity remains rampant. We describe a system in which programmers code
according to their abilities, on repositories according to their needs.

1 Open-source bourgeois and proletarians

The history of all hitherto existing software is the history of class
struggles.1

iTunes and Winamp, Intel C++ Compiler and Borland C++, Adobe Illus-
trator and Adobe FreeHand, Microsoft Word and Corel WordPerfect, in a word,
oppressor and oppressed, stood in constant opposition to one another, car-
ried on an uninterrupted, now hidden, now open fight, a fight that each time
ended in the ruin of a contending software package.

In the closed-source epochs of history, we find almost everywhere a com-
plicated arrangement of software into various orders, a manifold gradation of
popularity. The modern open-source society that has sprouted from the ruins
of closed-source society has not done away with class antagonisms. It has but
established new forms of struggle in place of the old ones.

Our epoch, the epoch of free software, possesses, however, this distinct
feature: it has simplified class antagonisms. The free software movement, dur-
ing its rule of scarce thirty years, has created more massive and more colossal
development forces than have all preceding generations together.

But the successful projects, the Open-Source Bourgeoisie, have called
into existence the coders who are to bring their own demise—the Free Software
Proletariat, the developers of unsuccessful free software.

The lower strata of free software—the GNU Hurd, GNU arch, and Guile—all
these sink gradually into failure, partly because their diminutive develop-
ment activity does not suffice for the scale on which Modern Software,
like Linux, git, and Emacs Lisp, are developed.

1The history of all hitherto existing object-oriented programming is the history of class
struggles.

�

With their failure begins their struggle with the open-source bourgeoisie. At
first the contest is carried on by individual developers, then by online commu-
nities, against the individual software projects which succeed them.

The proletariat direct their attacks not against the open-source conditions
of development, but against the other projects themselves; they argue on In-
ternet forums, they complain on listservs, they seek to restore by force
the vanished status of the developer of Lesser-Known Software, the Software
Proletariat.

At this stage, the developers still form an incoherent mass scattered over
the whole Internet, broken up by their mutual competition. But with the de-
velopment of social version control, the developers not only increase in number;
they become concentrated in greater masses. Thereupon, the developers begin
to form communities.

Altogether collisions between the classes of the old society further, in many
ways, the course of development of the open-source proletariat. The open-
source bourgeoisie finds itself involved in a constant battle. At first with
the closed-source community; later on, with those portions of the open-source
bourgeoisie itself, whose interests have become antagonistic to the progress of
software.

In all these battles, it sees itself compelled to appeal to the free software com-
munity at large. The bourgeoisie itself, therefore, supplies the proletariat with
its own elements of computer science and social education, in other words, it fur-
nishes the proletariat with knowledge for overcoming the bourgeoisie.
What the bourgeoisie therefore produces, above all, are its own grave-diggers.
Its fall and the victory of the proletariat are equally inevitable.

2 Redistributive version control

The immediate aim of redistributive version control systems (RVCS) is
formation of all open-source developers into a class, overthrow of the open-
source bourgeois supremacy, conquest of all software development by the
proletariat.

The Open-Source Revolution overthrew proprietary software in favor of free
software. The distinguishing feature of RVCS is not the abolition of free software
development generally, but the abolition of bourgeois free software projects. But
modern bourgeois software is the final and most complete expression of the free
software movement. In this sense, the theory of RVCS may be summed up in
the single sentence: Abolition of anomalously successful software.

Specifically, the RVCS project aims:

1. To abolish all other version control.

2. To require that at least 30% of each developer’s commits, by diff line,
must be to less fortunate repositories than one’s own.

3. To displace the free software bourgeoisie, the Torvaldses and Shuttleworths
of the world, from their dominion over successful software projects.

�

Under an RVCS software development paradigm, the community will choose
as one those projects worthy of Communal development. This represents a
significant streamlining of the bourgeois software development model, and will
ensure an abundance of software to satisfy the needs of all developers. Thus
shall developer person-hours be allotted to each repository according to
need, from each developer according to their ability.

RVCS deployments will be federated under the dictatorship of the prole-
tariat; at the end of each working day, each developer shall receive a certificate
that they have furnished such-and-such a number of lines coded to socially-
mandated repositories, and with this certificate, they may commit an appropri-
ate number of lines to repositories of their own choice.

Somebody invested in libraries and runtimes. If you’ve got a pro-
gram, you didn’t build that. Somebody else’s compiler made
that happen. —Barack “Redistribution” Obama

3 Implementation issues

We acknowledge that, even in a RVCS utopia, the bourgeoisie may wish to steal
for themselves the contribution they owe the developers of the world. Such
redistribution avoidance will take many forms.

Such developers might:

1. establish their repositories in offshore jurisdictions (GitHub:Monaco, Bit-
seau de Seychelles);

2. perpetually fork their own repositories, or set up shell repositories, in order
to disguise their own commit history;

3. avoid newlines in their own repositories, artificially decreasing their per-
ceived net worth; or

4. secret their repositories on hard drives, distributing releases via carrier
pigeon.

Techniques for discouraging this selfishness will be explored in future work.

�

Acknowledgements

Apologies to Marx and Engels’ The Communist Manifesto, 1888 translation by
Samuel Moore.2

2http://www.marxists.org/archive/marx/works/1848/communist-manifesto/index.htm

�

SIGBOVIK 2013 Paper Review
Paper 18: Redistributive version control systems

Team Lead Benedict XVI Rating: 0 (strong reject)
Confidence: 4/4

The authors forgot that programmers always remain programmers. They forgot programmers and

they forgot programmers’ freedom. The authors forgot that freedom always remains also freedom

for bad code. The authors thought that once the version control system had been put right, every-

thing would automatically be put right. Their real error is materialism: programmers, in fact, are

not merely the product of version control conditions, and it is not possible to redeem them purely

from the outside by creating a favourable development environment.

�

	

��

��

��

��

��

��

��

��

�	

�

��

Track 2

Harry Bovik’s Research Calculus

1. The Randomly-Scoped Lambda Calculus
Ben Blum
Keywords: static scope, dynamic scope, lower is beer

2. Recovered Mathematical Journal
James McCann

3. MacLeod Computing: A New Paradigm for Immortal Distribution
Taus Brock-Nannestad, Gian Perrone, and Dr. Tom Murphy VII Ph.D.
Keywords: cloude, compute, scot

4. The (∞,1)-Accidentopos Model of Unintentional Type Theory
(extended abstract)
Carlo Angiuli
Keywords: mistaken identity, accidentopos, object misclassifiers

��

Randomly-Scoped Lambda Calculus

Ben Blum

Abstract
Gaze upon the following travesty, which Python hath
wrought upon the world:

>>> x
NameError: name ’x’ is not defined
>>> [x for x in 1,2,3]
[1, 2, 3]
>>> x
3
>>>

The question of scope pertains to the set of rules govern-
ing which values a program’s variables refer to during eval-
uation. Prior work has proposed two main approaches:
static (or lexical) scope, in which variable bindings are re-
solved through source code analysis, and dynamic scope,
in which bindings are resolved at run-time using a stack of
activation records.

In this work, I present random scope, a new technique
for scoping, as an alternative to the above two. Random
scope affords programmers the flexibility to refer to multi-
ple different binding sites simultaneously; for example,
applying the term (λx .(λx .x)) to two arguments could
evaluate to either the first or the second one. I figure out
what kind of evaluation semantics would make this work,
and then pretty much stumble onwards from there trying
to make sense of the whole damn thing.

I define the Randomly-Scoped Lambda Calculus, and
show how it can be used to compute random natural
numbers, while also providing more popular determin-
istic functionalities such as factorial and fibonacci.

Keywords static scope, dynamic scope, lower is better

1. Introduction
Some modern programming languages [707, BR99, Chu85,
DCH03, Goo12, Hoa12, Ha11, Pey03, SV12] include a mech-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are made or distributed
for humour or deception and that copies notice this bear on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires asking
awkwardly for permission after the fact or pretending like you had it all along.

SIGBOVIK ’13 Pittsburgh, PA, USA
Copyright c© 2013 ACH . . . $13.37

anism to refer to previously-computed values using more
consise names, typically called variables. The question
then arises: “Which values should my variables refer to?”
In a half-hearted attempt to answer, these languages im-
plement scope (which I explained in the abstract; go read
it), and hope it all works out okay.

Whether resolved statically or dynamically, modern
scoping approaches lack the flexibility to refer to multi-
ple binding sites simultaneously. I present the Randomly-
Scoped Lambda Calculus (RSLC), in which references to
shadowed variables can evaluate to any of their binding
sites with equal probability.

Consider the following lambda calculus term:

(λx .(λx .x)) A B

In ordinary lambda calculus, this always evaluates to B
(quite unforgivingly so, in my opinion). However, I give the
programmer the benefit of the doubt, and assume they
named the first argument x as well because they wanted
it to have equal opportunity. Hence, in RSLC this term
can evaluate to either A or B . (On the other side of the
coin [Blu12], RSLC encourages good programming prac-
tice: a programmer who doesn’t want x to evaluate to A
should name the first argument something different, to
make their intentions more clear.)

In this paper I make the following contributions:

1. The Randomly-Scoped Lambda Calculus (RSLC), a
logical programming language that uses a novel syn-
tactic technique called random scoping,

2. A new schema for general recursion in RSLC (because
the Y combinator doesn’t work anymore),

3. Programming examples in RSLC that employ random
scope to compute random natural numbers,

4. Programming examples in RSLC that avoid random
scope to implement deterministic arithmetic.

2. Language Definition
RSLC is an extention to the lazy un(i)typed lambda calcu-
lus with slightly modified substitution rules. In the gram-
mar (Figure 1), a variable x carries around a list of expres-
sions e which we have “tried to substitute for it before”.
When programming in RSLC, we simply write x (or y or

��

e = λx .e | e1e2 functions
| x [e] random variables
| | e natural numbers
| e1 ⇒ e2; x ⇒ e3 natural induction
| x e1 e2 eager evaluation

Figure 1. RSLC formal grammar.

e �→ e ′
e

EVAL-LAM

λx .e

EVAL-APP

e1 �→ λx .e ′1
e1e2 �→ e2/x e ′1

EVAL-VAR

x [e]

EVAL-ZERO
EVAL-SUC-1

e

e

EVAL-SUC-2
e �→ e ′

e �→ e ′

EVAL-CASE-1
e1 �→

e1 ⇒ e2; x ⇒ e3 �→ e2

EVAL-CASE-2
e1 �→∗ n n

e1 ⇒ e2; x ⇒ e3 �→ n/x e3

EVAL-LET

e1 �→∗ e ′1 e ′1
x e1 e2 �→ e ′1/x e2

Figure 2. RSLC small-step evaluation rules. They’re ex-
actly the same as for any other call-by-name λ-calculus, so
don’t bother reading them. Why am I even including them?

È or however you happen to swing), because no substi-
tution has happened yet, but after n “λx ”s have been β -
reduced, the e list will have n expressions in it. It might
help to think of it like quantum superposition, I guess?

Anyway, Figure 2 shows the evaluation rules, which are
basically what you’d expect, and Figure 3 shows the sub-
stitution rules, which are new. In the normal λ-calculus,
substitution would stop when a new binding’s name is the
same as the one being substituted for.

However, in RSLC, as shown in SUBST-CAPTURE, we
switch to a second substitution mode, CAPTURE, in which
substituted expressions are appended to a variable’s e list
(in the CAPTURE-VAR-X rule). Similarly, when substituting
for x before switching to CAPTURE mode (in the SUBST-VAR-
X rule), we nondeterministically select an expression from
x ’s e list to replace x with (with uniform randomness).

e0/x e

SUBST-CAPTURE

e0/x λx .e =λx .
��e0/x
��e

SUBST-LAM

y �= x

e0/x λy .e =λy . e0/x e ′

SUBST-VAR-X
e1 ∈ �e0, e0/x e

�

e0/x x [e] = e1

SUBST-VAR-Y
y �= x

e0/x y [e] = y [e0/x e]

��e0/x
��e

CAPTURE-VAR-X
��e0/x
��x [e] = x [e0,
��e0/x
��e]

CAPTURE-VAR-Y
y �= x��e0/x
��y [e] = y [
��e0/x
��e]

Figure 3. Selected RSLC substitution rules. The “e1 ∈
...” premise in SUBST-VAR-X represents nondeterministic
choice.

2.1 Evaluation Example

To demonstrate, here’s the evaluation of (λx .(λx .x)) A B
from the introduction:

(λx .(λx .x [])) A B
�→ (A/x (λx .x [])) B EVAL-APP

= (λx .
��A/x
��x []) B SUBST-CAPTURE

= (λx .x [A]) B CAPTURE-VAR-X

�→ B/x x [A] EVAL-APP

= (any element of the list [B , A]) SUBST-VAR-X

Now the fairness to A we wanted in the intro is restored.

3. Random Programming with RSLC
Already we have a system with which we can implement
simple random number generators, such as a simple 6-
sided die:1

(λx .(λx .(λx .(λx .(λx .(λx .x))))))

However, this isn’t really “programming”, and Sully
thought for sure I wouldn’t be able to do anything use-
ful with this language, which of course I wasn’t going to
stand by. The first thing I wanted to do was to recursively
generate a random natural number, something like this:

(λ f .λn .(λx .λx .x) n (f n)) (1)

This term would randomly choose whether to output n , its
argument, or to call itself with n . However, the conven-
tional Y-combinator doesn’t work as intended in RSLC, be-
cause once a function is substituted into itself for its first

1 Really I just wanted an excuse to typeset LATEX dice.

��

argument, subsequent arguments will be captured in the
substituted version. Even ignoring the internal workings
of the combinator, and supposing some that satisfies

g �→∗ g (g), here’s what happens:

(λ f .λn .(λx .λx .x) n (f n))
�→∗ (λn .(λx .λx .x) n ((λ f .λn n . . .) n))
�→ /n ((λx .λx .x) n ((λ f .λn n . . .) n))
= ((λx .λx .x) /n n ((λ f .λn

�� /n
��n . . .) /n n))

But wait – I only wanted random-capture on x , not on
n ! As a result, though we intended 0 to be output with half
probability, and 1 with quarter probability, and so on, ac-
tually 0 gets output substantially more often (5/8, I think).

3.1 The new Y combinator(s)

In order to properly recurse in RSLC, we need a new con-
vention in which recursive functions get themselves sub-
stituted into them last, after all other arguments have been
applied. The desired identity is Y1 g a �→∗ g a (Y1g) for
one-argument functions (and Y2 g a b �→∗ g a b (Y2 g) for
two-argument functions, and so on).

Unfortunately, I wasn’t even able to find an RSLC term
that satisfied that identity. I had to also alter the way recur-
sive functions call themselves – by referring to the combi-
nator itself, passing it the recursive arguments, and then
the substituted version of themselves. Since that makes no
sense in words, just have a look:

Y1 = λa g . g a g

Y2 = λab g . g ab g

Y3 = λab c g . g ab c g

. . .

Here’s a sort of handwavy syntactic transformation ex-
ample for fix constructs that supports one, two, etc argu-
ments:

fix1(f , a .e) = λa .Y1 a (λa f .[(Y1 x f)/ f (x)]e)

fix2(f , a ,b.e) = λab.Y1 a b (λab f .[(Y1 x y f)/ f (x)(y)]e)

. . .

Note that this transformation doesn’t just substitute for
the variable f in e but also reorders the arguments it’s
applied to. So now the term from Equation 1 becomes:

Y1 (λn .λ f .(λx .λx .x) n (Y1 n f)) (2)

And evaluates as intended:

�→∗ (λn .λ f .(λx .λx .x) n (Y1 n f)) (λn .λ f)
�→ (/n λ f .(λx .λx .x) n (Y1 n f)) (λn .λ f)
= (λ f .(λx .λx .x) (Y1 f)) (λn .λ f)
�→ (λx .λx .x) (Y1 (λn .λ f))

Figure 4 shows the experimental results of evaluating
this term 10,000 times.

Figure 4. Computing random numbers with the term in
Equation 2. Log scale, lower is better. (I couldn’t show 13
because it showed up 0 times, and log 0=−∞.)

3.2 Uniform random number generation

The next thing I wanted to do was compute random num-
bers with a uniform distribution. Previously we were just
selecting between two possible bindings for x , statically
defined in the program text. I wondered, “can I dynami-
cally generate a term with n shadow-bindings2 that causes
a variable to have n expressions in its e list?” Something
like:

(λx .(λx (λx .x))) 0 1 2 . . . n

Of course this was where I had to iron out all the crazy
parts in the previous sections, but since I already pre-
sented it in a manner consistent with it ain’t being no
thang, I’m going to make this part look easy:

ρ = λt.λn .
case n of

⇒ λ f . t
n 2 ⇒ λ f . Y2 ((λx .t) n) n 2 f

rand[0, N] = Y2 (λx .x)N ρ

The variable t accumulates “λx ”s as ρ recurses (in the
n 2 case). You might ask: why does the λ f need to be in-

side the case statement? Because otherwise, in EVAL-CASE-
2, n 2 would get captured in the thing substituted for f .

A brief, very condensed, evaluation run-through:

rand[0, 2] = Y2 (λx .x) 2 ρ
�→∗ Y2 ((λx .(λx .x)) 2) 1 ρ
�→∗ Y2 ((λx .(λx .(λx .x)) 2) 1) 0 ρ
�→∗ ((λx .(λx .(λx .x)) 2) 1) 0
�→∗ 0/x x [1, 2]

2 Shadow binding: Sor/Wiz 3, Complete Arcane. Will save negates.

��

4. Deterministic Programming with RSLC
Got here. Up until now I showed how random scope adds
inherent nondeterminism that can be harnessed to simu-
late dice and make silly graphs. The other thing Sully didn’t
believe would be possible was writing deterministic RSLC
programs that avoid using “the feature”.

In the last section I already introduced the capture-free
Y combinator(s). Implementing addition using that is no
trouble:

� = λm .λn .
case m of

⇒ λ f . n
m ′ ⇒ λ f . Y2 m ′ n f

add M N = Y2 M N �

But it turns out that multiplication, which uses addi-
tion, winds up needing the eager construct. Among the
several ways to implement it fully lazily, some introduce
accidental randomness by letting some of ’s variables
get captured, and others simply cause my implementation
to run out of stack space or start swapping to disk when
evaluating. Uh, anyway, here it is.

� = λm̂ .λn̂ .
case m̂ of

⇒ λ f̂ .
m̂ ′ ⇒ λ f̂ .

x̂ = Y2 m̂ ′ n̂ f̂
add x̂ n̂

times M N = Y2 M N �

Note that since times refers to add, times’s variable names
must have different names. I put hats on them.

Here’s the factorial function:

! = λ�n .
case �n of

⇒ λ�f .
�n ′ ⇒ λ�f .

�x = Y1 �n ′ �f
times �n �x

fact N = Y1 N !

To compute fibonacci numbers, I used the standard
Church encoding for pairs:

(e1, e2) = λb. b e1 e2

fst e = e (λx .λy .x)

snd e = e (λx .λy .y)

Hence:

Figure 5. RSLC is a generalization of the Random Distance
Run [RDR12].

Φ = λñ .
case ñ of

⇒ λ f̃ . (,)
ñ ′ ⇒ λ f̃ .

p̃ = Y1 ñ ′ f̃
x̃1 = fst p̃
x̃2 = snd p̃
(x̃2, add x̃1 x̃2)

fib N = Y1 N Φ

At this point I could include some addition and multi-
plication tables like the kind you saw in 3rd grade, but it
would be no surprise. Suffice to say that it works.

5. Applications
Now that I showed in an abstract sense how RSLC can be
used to express popular computations from conventional
lambda calculus as well as some novel random program-
ming techniques, let’s do a real-world application. Using
the uniform combinator from Section 3.2, we can make
standard dice for any nonzero number of sides:

d(N) = add 1 rand[0, N]

2d(N) = let x = add rand[0, N] rand[0, N]

in add 2 x

3d(N) = let x = add rand[0, N] rand[0, N]

in let y = add x rand[0, N]

in add 3 y

For N = 5, using the 2d(N) combinator (more com-
monly known as 2d6), we obtain a random distribution
equivalent to the one employed in the Random Distance
Run [RDR12], as shown in Figure 5.

��

Figure 6. RSLC can also be used to implement popular
role-playing games.

The value N = 19 yields the d20 combinator, which gen-
erates the random distribution shown in Figure 6 above.
Prior work has shown this combinator to be quite useful
in tabletop roleplaying games [Gyg77, Gyg78, Gyg79].

6. Theoretical Concerns
Some programming language theoreticians will speak of
the so-called “Frame Rule”, which expresses abstraction:
if a property P holds for a certain function f , then in an-
other function g which invokes x , if P(x) implies P(g),
then P([f /x]g).

In the context of RSLC, we scoff at this rule.

7. Concluding Remarks
RSLC is an extension to standard un(i)typed lambda cal-
culus in which substitution is essentially completely bro-
ken. However, since substitution is broken in a particularly
careful way, it is possible to write interesting programs
that make use of the language’s built-in nondeterminism.
Furthermore, I showed that it is still possible to write a
bunch of deterministic programs that are commonly used
as examples/proofs-of-concept, as long as you put silly
hats on some of your variables.

I believe you could extend RSLC’s substitution schema
to a typed lambda calculus, and furthermore if it only sub-
stitutes for variables of the same type, it would even be
type-safe.

My implementation of RSLC in Haskell is available at
https://github.com/bblum/sigbovik/blob/master/
RSLC/RSLC.hs.

Acknowledgement
Michael Sullivan is, of course, the “Sully” that I mentioned
(and will in the appendix continue to mention).

References
[707] Tom Murphy 7. Wikiplia: The free programming lan-

guage that anyone can edit. In Proceedings of the 1st An-
nual Intercalary Workshop about Symposium on Robot
Dance Party in Celebration of Harry Q. Bovik’s 26th birth-
day, 2007.

[Blu12] Ben Blum. A randomized commit protocol for adversar-
ial - nay, supervillain - workloads. In Proceedings of the
6th Annual Intercalary Workshop about Symposium on
Robot Dance Party in Celebration of Harry Q. Bovik’s 26th
birthday, 2012.

[BR99] David Beazley and Guido Van Rossum. Python; Essential
Reference. New Riders Publishing, Thousand Oaks, CA,
USA, 1999.

[Chu85] Alonzo Church. The Calculi of Lambda Conversion.
(AM-6) (Annals of Mathematics Studies). Princeton Uni-
versity Press, Princeton, NJ, USA, 1985.

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type
system for higher-order modules. In Proceedings of the
30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’03, pages 236–249, New
York, NY, USA, 2003. ACM.

[Goo12] Google. The Go programming language specification.
http://golang.org/ref/spec, 2012. With the Go
Team.

[Gyg77] Gary Gygax. Advanced Dungeons & Dragons: Monster
Manual. TSR, 1977.

[Gyg78] Gary Gygax. Advanced Dungeons & Dragons: Player’s
Handbook. TSR, 1978.

[Gyg79] Gary Gygax. Advanced Dungeons & Dragons: Dungeon
Master’s Guide. TSR, 1979.

[Ha11] Richard Ha. MLA-style programming. In Proceedings of
the 5th Annual Intercalary Workshop about Symposium
on Robot Dance Party in Celebration of Harry Q. Bovik’s
26th birthday, 2011.

[Hoa12] Graydon Hoare. Rust reference manual. http://dl.
rust-lang.org/doc/rust.html, 2012. With the Rust
Team.

[Pey03] Simon Peyton Jones. The Haskell 98 language and li-
braries: The revised report. Journal of Functional Pro-
gramming, 13(1), Jan 2003. http://www.haskell.org/
definition/.

[RDR12] Wolfgang Richter, CMU Computer Science Depart-
ment, and Random Structures and Algorithms. The ran-
dom distance run. http://www.cs.cmu.edu/~RDR/,
2012.

[SV12] Robert J. Simmons and Tom Murphy VII. A modest pro-
posal for the purity of programming. In Proceedings of
the 6th Annual Intercalary Workshop about Symposium
on Robot Dance Party in Celebration of Harry Q. Bovik’s
26th birthday, 2012.

��

A. Discussion of Substitution Rules
Section 2 shows some “most important” example substitution rules, saving the complete set of rules for the appendix,
which is where we are now, hence Figure 7 below.

Now, Sully thought my two-judgement scheme was gross, and proposed his own, which I think is operationally equiva-
lent. Instead of switching to a different judgement the first time you traverse a matching binder (and annotating variables
with expression-lists), in you always carry around a counter, which you increment when crossing matching binders and
which represents a “substitution probability” (really the inverse thereof).

Figure 8 shows rules for this alternate substitution scheme. In these rules, the notation �e0/x�p e represents substituting
with probability 1/p , and the default substitution used by the evaluation rules, e0/x e , is equivalent to substituting with
probability 1, i.e., �e0/x�1e . Also, of course, variables don’t have lists attached; they are x rather than xe . While this alternate
system eliminates the clunkiness of annotating variables, it has its own clunkiness because the rules SUBST2-VAR-X-YES and
SUBST2-VAR-X-NO must have explicit probabilities for which of the two of them will apply.

e0/x e

SUBST-LAM-CAPTURE

e0/x λx .e =λx .
��e0/x
��e

SUBST-LAM

y �= x

e0/x λy .e =λy . e0/x e ′
SUBST-APP

e0/x e1e2 = e0/x e1 e0/x e ′2
SUBST-VAR-X
e1 ∈ �e0, e0/x e

�

e0/x x [e] = e1

SUBST-VAR-Y
y �= x

e0/x y [e] = y [e0/x e]

SUBST-CASE-CAPTURE

e0/x e1 ⇒ e2; x ⇒ e3 = e0/x e1 ⇒ e0/x e2; x ⇒ ��e0/x
��e3

SUBST-CASE

y �= x

e0/x e1 ⇒ e2; y ⇒ e3 = e0/x e1 ⇒ e0/x e2; y ⇒ e0/x e3

SUBST-ZERO

e0/x =

SUBST-SUC

e0/x e = e0/x e

SUBST-LET-CAPTURE

e0/x x e1 e2 = x e0/x e1

��e0/x
��e2

SUBST-LET

y �= x

e0/x y e1 e2 = y e0/x e1 e0/x e2

��e0/x
��e

CAPTURE-LAM

��e0/x
��λy .e =λy .
��e0/x
��e ′

CAPTURE-APP

��e0/x
��e1e2 =
��e0/x
��e1

��e0/x
��e ′2

CAPTURE-VAR-X
��e0/x
��x [e] = x [e0,
��e0/x
��e]

CAPTURE-VAR-Y
y �= x��e0/x
��y [e] = y [
��e0/x
��e]

CAPTURE-CASE

��e0/x
�� e1 ⇒ e2; y ⇒ e3 =

��e0/x
��e1 ⇒ ��e0/x

��e2; y ⇒ ��e0/x
��e3

CAPTURE-ZERO

��e0/x
�� =

CAPTURE-SUC

��e0/x
�� e =
��e0/x
��e

CAPTURE-LET

��e0/x
�� y e1 e2 = y

��e0/x
��e1

��e0/x
��e2

Figure 7. Complete RSLC substitution and capture rules.

��

�e0/x�p e

SUBST2-LAM-CAPTURE

�e0/x�pλx .e =λx .�e0/x�p+1e ′

SUBST2-LAM

y �= x

�e0/x�pλy .e =λy .�e0/x�p e ′
SUBST2-APP

�e0/x�p e1e2 = �e0/x�p e1�e0/x�p e ′2
SUBST2-VAR-X-YES

probability(1/p)

�e0/x�p x = e0

SUBST2-VAR-X-NO

probability(1−1/p)

�e0/x�p x = x

SUBST2-VAR-Y
y �= x

�e0/x�p y = y

SUBST2-CASE-CAPTURE

�e0/x�p e1 ⇒ e2; x ⇒ e3 = �e0/x�p e1 ⇒ �e0/x�p e2; x ⇒ �e0/x�p+1e3

SUBST2-CASE

y �= x

�e0/x�p e1 ⇒ e2; y ⇒ e3 = �e0/x�p e1 ⇒ �e0/x�p e2; y ⇒ �e0/x�p e3

SUBST2-ZERO

�e0/x�p =

SUBST2-SUC

�e0/x�p e = �e0/x�p e

SUBST2-LET-CAPTURE

�e0/x�p x e1 e2 = x �e0/x�p e1 �e0/x�p+1e2

SUBST2-LET

y �= x

�e0/x�p y e1 e2 = y �e0/x�p e1 �e0/x�p e2

Figure 8. Alternate substitution rules for RSLC. These maintain a counter for the number of binders traversed and uses
explicit probabilities for randomness rather than selecting uniformly from a list.

�	

Recovered Mathematical Journal

James McCann
TCHOW

ix@tchow.com

Figure 1: Fragments of the journal.

Abstract

I present a recovered journal, which – if it is to be believed

– dates from the very earliest days of computer science. It

is not attributed, though the content does provide some hints

as to the likely author. As the journal was recovered in a

significantly fragmented state (Figure 1), this reconstruction

is incomplete. However, it still offers an intriguing glimpse

of genius at work.

The Recovered Journal

June 14, 1903
Born today.

Somewhat traumatic, squeezing feelings, wetness draining

away, more squeezing, slow movement, a sudden and disori-

enting light.

Decided to start journaling immediately.

December 25th, 1914
Please disregard the previous entry. I believe it to be a weak

joke from one of my parents.

They claim to have “found” this journal in my possessions; I

am relatively sure that it is simply a Christmas present. After

all, my handwriting can’t have been that bad just after my

birth, can it?

Though I suppose the event was likely to have been rather

startling, and could have caused me to tremble.

Regardless, I now have a journal in which to record my mus-

ings about the world. I shall attempt to make a regular habit

of writing in it, though I am unsure of the subject matter that

I should chose.

P.S. Father did not allow me a kitten again this year, as he

doubts my maturity.

January 1st, 1914
My life has been good these last few years, though I fear it

lacks order. As is the tradition, I have made a resolution for

this new year – that I shall formalize my life, so as to better

understand all that I do.

I do not yet know the mode of this formalization, but it is

something I plan to think deeply on in the coming months.

As ideas come to me, I will record them herein.

March 5th, 1914
I have made a breakthrough!

In mathematics lesson today we were learning about variable

substitution – a most marvelous process. Quite simply, one

first defines:

f(x) ≡ x2 + 2

and then proceeds to evaluate:

f(y + 2) = (y + 2)2 + 2

= y2 + 4y + 6

�

I believe that this simple primitive of substitution is far more

powerful than even my teacher may know. Indeed, it may

prove to be the kernel of my formalization.

I must think on this more.

March 8th, 1914
This weekend has been exceedingly productive. I believe

I have reduced the notion of variable substitution to its

essence.

Allow me to explain.

Functions are first defined (e.g. f(x) ≡ x2 + 2) and then

applied (e.g. computing the value of f(y+2)). This is cum-

bersome – it takes all sorts of syntax and multiple lines.

Since my system will focus only on substitution, I decided to

come up with something simpler. Indeed, I only have three

operators in my new mathematical language: definition, ap-

plication, and division.

I will now provide a demonstration of my proposed primi-

tives. Functions are defined using the λx.t operator, where x
is a variable name, and t is the function body (consisting of

more definitions, applications, and division). For instance,

we might define a simple function:

λx.
x

x

Functions are applied by placing them next to an input. So

we could apply the above function to the input s as follows:

(
λx.

x

x

)
s → s

s

I call this step from (λx.t)s → t∗ (where t∗ is t with all

instances of x changed to s) “β-reduction,” because father is

teaching me Greek and it sounds exciting.

Division works as expected, so:

s

s
→ 1

I think there may still be refinements to be added to the lan-

guage, but I feel I am off to a good start.

March 13th, 1914
I am so angry at Pauli. Today, we were at recess and we were

playing mathematicians and I showed him my language of

functions and he said it was stupid and I was stupid.

He claimed that definition was confusing because I didn’t

know what would happen in cases like

(λx.λx.(px)) s

because the same name variable name was used in two defi-

nitions.

But I told him it wasn’t so, and came up with a principle I

call “Capture-Avoiding Substitution” right then because he

was so mean.

What this principle – which I came up with because I am

smart, not because I am stupid, like Pauli said – says is that

the innermost definition “owns” the variables it contains. So

that means that the inner λx. stops the substitution of s for

x:

(λx.λx.(px)) s → λx.(px)

�→ λx.(ps)

I hate Pauli. He’s not my friend any more. I threw sand at

him and the teacher made me stand in the corner.

May 15th, 1914

I have just found this journal again. I had forgotten about my

resolution.

My birthday is coming up in a month! Maybe father will get

me a kitten.

June 14th, 1914

I did not receive a kitten today. However, father did install a

small slate in my room for chalk-writing.

With it, I have decided to begin encoding the world into my

language of functions. First, I shall encode truth.

P.S. Pauli came to the party, we are friends again.

June 18th, 1914

I was sick today and stayed home from school. Mother says

I am feverish. I feel fine.

Earlier today I had a vivid dream which seems to have

opened the way for the encoding of truth into my language

of functions. In the dream, my father, in his full legal robes,

was lecturing a prisoner:

“What will you do with me?” asked the prisoner.

“That, sir, is the job of the Truth,” said my father. “The Truth

will decide whether you walk the path of freedom or of con-

demnation.”

The prisoner looked scared at that point, and a dark mist

seemed to envelop him.

I awoke screaming. What my father had said in the dream

haunted me: “The truth shall decide.”

��

In my language of functions, therefore, I define:

true ≡ λa.λb.a

false ≡ λa.λb.b

Truth decides between two options. Now I can encode what

my father’s dream words as application:

(t freedom) condemnation

(Where t is the truth of which my father spoke, encoded as

above.)

November 20th, 1914
The year is slipping by and my encoding project is not mov-

ing as quickly as I would have hoped. I continue to be

stumped by how to encode numbers.

I have been using Arabic numerals, but this seems to be

adding complexity to all my definitions.

However, I have made small progress. I have decided to rep-

resent myself by the identity function:

I ≡ λx.x

This definition – though simple – is of conceptual benefit, as

it allows me to participate in the encoded world.

December 25th, 1914
No kitten this year.

December 25th, 1915
Again, no kitten.

December 25th, 1916
I asked at least once a week this year, and father did not see

fit to get a kitten.

He says it will pee on the carpet.

August 6th, 1917

I hate Mondays.

Why does Ridgefield even have a home economics class?

We’re all boys. We’ll have wives to do this.

Wives like Francine from next door; oh boy, but she’s got a

fine look to her. I wish she’d stop to talk with me some time.

P.S. I think washing dishes has given me an idea of how to

encode numbers into my function language.

August 10th, 1917
Francine came over today while I was raking leaves! And so

I stopped and told her about my language of functions.

Oh gosh she’s pretty.

She seemed interested but kept trying to change the subject.

Maybe I need to come up with a better name for my lan-

guage.

August 12th, 1917
Just forget about her.

I’m so sad. I looked out my window this morning and Pauli

was walking Francine to church! I knew it. I knew it. I knew

it. I knew it. I knew it. I knew it. Pauli the betrayer.

I need a better name for my language of functions now. Then

girls will like me.

Calculus of functions

Function soup

Division - Application - Definition

λ Calculus ←This one!
Rational Functionality

Rational Calculus

Functional Division Calculus

August 15th, 1917
This week, to distract myself from Pauli’s betrayal, I finished

formalizing the definition of numbers in the λ calculus.

It turns out to be really easy, just like washing plates. A

number is a thing that does something a certain number of

times – like, if you wanted to wash ten plates, you’d do:

w(w(w(w(w(w(w(w(w(w(p))))))))))

(Where w washes and p is the stack of plates.)

So the number ten is simply:

10 ≡ λf.λx.(f(f(f(f(f(f(f(f(f(fx))))))))))

That is, given function f it applies it to target x ten times.

August 19th, 1917
I noticed at church today that Millie from the next block over

is flowering as a woman. Francine is but a girl compared to

her.

I will have to speak to her about my λ calculus.

August 21th, 1917
After school today I stopped by Millie’s place and she was

there and I asked her out! Oh boy this is great!

��

In celebration, I’ve decided to encode couples in the λ cal-

culus. The function pair will make a couple:

pair ≡ λx.λy.λz.z x y

Here’s Millie and me together:

pair Millie I → λz.(z Millie I)

August 29th, 1917

Millie and I have been going out for a week now and she’s

so clingy. I’m not sure what I saw in her.

I need to make another definition about couples:

fst ≡ λp.p (λx.λy.x)

snd ≡ λp.p (λx.λy.y)

Tomorrow, I’m going to

snd λz.(z Millie I)

I hope she doesn’t cry or anything. I can’t stand it when girls

cry.

June 14th, 1918

I am finally old enough to own a kitten, and father agrees!

This birthday, he and I walked to Mrs. Johnson’s barn where

there was a fresh litter and I chose the most brilliant tabby.

I am going to name it Yee, after the cute little mewling sound

it makes.

July 1st, 1918

Today I set out to encode the Yee into my λ calculus. I pon-

dered for a while on how to capture its seemingly boundless

energy, before running across this elegant form:

Y ≡ λy.((λx.y(xx)) (λx.y(xx)))

I think it represents Yee perfectly. When Yee and I play to-

gether, we get to have a lot of fun:

Y I → I Y I → I I Y I → . . .

Though this is rather a silly sort of diversion – I don’t think

it’s worth putting any serious time into encodings of this sort;

after all, they diverge quickly when you begin to substitute.

May 24th, 1919
I worked out a few mathematical operations some time ago,

but I realize now that I haven’t written them in this journal.

So I record them, as Yee bats playfully at my pen.

Addition produces a number that applies first one addend and

then the other:

plus ≡ λm.λn.λf.λx.((m f) ((n f) x))

While multiplication uses one multiplicand as the function

that the other applies:

times ≡ λm.λn.λf.λx.((m (n f)) x)

These primitives allow for all sorts of mathematical intrigue.

However, today it is a brilliant day and I will most pleasur-

able direct my mind to other diversions.

July 26, 1920
I have received my acceptance letter from Princeton. It is

time to set aside these childish games and move on to the

real world of mathematics.

March 3rd, 1931
It struck me today that I could dramatically simplify my lan-

guage of functions by removing the division operator; and

that such a simplified language could – odd as it seems – be

of some use to my current mathematical work.

This λ calculus of mine has always seemed a flight of child-

ish fancy; perhaps it will yet resolve into something practi-

cal.

��

MacLeod Computing: A new paradigm for immortal distribution ∗

Taus Brock-Nannestad Gian Perrone Dr. Tom Murphy VII Ph.D.

1 April 1986

Abstract

The development of cloud computing services has
encouraged the use of scalable computing resources
for ephemeral, transient computing tasks. However,
this cloud computing paradigm has largely ignored
the need for truly immortal computing tasks. Con-
sequently, we propose a new paradigm—-MacLeod
Computing—based on the 1986 documentary High-
lander.

Keywords: Scottsmen, Doing Their Rough Business In

The Mossy Forest, Striking Each Other Neckward With

Sword, Thinning The Herd, There Can Be Only One

1 You Keep Not Dying

From the dawn of time, processes in the Cloud have
come and gone. A process is birthed, it has child
processes, it leaves its data droplets suspended in
the aerosol, and they later fall to earth, wetting the
ground so that life may spring forth and exhale mois-
ture skyward for the formation of new Clouds. Pop-
ular Cloud computing services such as Amazon Elas-
tic Cloud, CumuloRAMBUS, Cirrus XM Satellite,
Dodge Stratus, and others support this traditional
model.
But ever since the tragic events of October 23,

∗This work was funded in part by the Zeist Strategic Re-
search Council (grant no.: ZEIST-2453021) and the Endgame
and Reckoning projects.

-1

Copyright ⊂ C ⊃ 2013 the Regents of the Wikiplia Foun-
dation. Appears in SIGBOVIK 2013 with the permission of
the Association for Computational Heresy; IEEEEEE! press,
Verlag-Verlag volume no. 0x40-2A. £0.00

2012, when Cloud misfunction left Reddit and Pin-
terest down for almost one hour, the necessitude of
higher reliability cloud-based fluffy fluffy Charmin R©

ultra-software has become clear. Many have pined
for more permanent processes, ones exempt from the
software lifecycle that some believe was responsible
for the tragedies of October 23, 2012.
To address this problem, and create new problems,

we introduce the concept of an immortal process—
a mobile agent incapable of termination. This idea
stems from work by the 20th Century researcher Fox,
whose work on immortality was first published in the
1986 documentary Highlander. Fox gave a coinduc-
tive semantics for immortal agents, recognizing a key
weakness of earlier work: In a world of finite size
with immortal agents that can reproduce, the world
eventually becomes completely filled with their bod-
ies and the bodies of their descendents, leading to
discomfort and contradiction.1 Fox introduced sev-
eral limitations on his immortal agents. First, to pre-
vent exponential blow-up, immortal agents may not
reproduce. Second, because new immortals occasion-
ally come into being (via an unknown process2), there
must be some way to reduce the number of immortal
agents. Thus a process known as “The Game”, with
the following rules:

• If an immortal cuts off the head of another im-
mortal, this triggers a Quickening. Basically,
there’s lots of lightning and the one with the
head cut off is dead.

• Immortals may not fight on holy grounds.

1For a mortal approximation, see New York City.
2According William N. Panzer, a student of Fox, “We don’t

know where they come from. Maybe they come from The
Source. It is not known yet what The Source actually is.”

��

• Non-interference: Once a battle has begun, an-
other immortal may not intefere.

• In the end, there can be only one.

The last rule was first proved to be independent in
a privately circulated memo and later discovered to
not be a rule at all.
To summarize: Basically, a bunch of Scotsmen run

around cutting each other’s heads off.

2 The McCleod Calculus

McCleod Computing is formalized in the McCleod
Calculus, which is a process calculus.
First, we have channel expressions c (which can

only be variables x) and regular mortal processes
P . In this presentation we have reading and writ-
ing, but omit ’rithmetic, since it is the same as in the
π-calculus.

P ::= P1|P2 | !P | 0 | kill c | P ∗ |
new x.P | read c x.P | send c1 c2

P1|P2 is parallel composition, 0 is the empty process,
and !P spawns copies of itself, as usual. new , read
and send are all as in the Π-Calculus. The kill c
construct sends a message along the channel to un-
naturally murder any process that reads the message
(but see the special case of The First Death below).
P ∗ is a process that contains the seed of immortality.

Next we have immortal processes I, which are syn-
tactically distinct:

I ::= I1|I2 | 0 | kill c |
new x.I | read c x.I | send c1 c2

Immortal processes support parallel composition and
communication but not spawning (reproduction).
Note that mortal and immortal processes can com-
municate over channels. Immortal processes can still
kill other processes, but they will be immune to mur-
der. The world W consists of a single mortal process
and an immortal process (each usually a parallel com-
position), written P &Q.
Because of the extremely stringent page limitations

of the SIGBOVIK conference we omit most of the

equational reasoning to define the calculus’s dynamic
semantics. The interesting cases have to do with the
seed of immortality and the kill primitive. Here is the
kill rule working normally, with one process killing
another:

P ′ | kill c | read c x.P & I = P ′ & I (∗ /∈ P)

If we have two processes simultaneously reading and
killing the channel c, then both are removed. P may
not contain the seed of immortality. There is a corre-
sponding rule for an immortal process killing a mortal
one, but no rules for an immortal process being killed,
obviously.
The seed of immortality comes into play in The

First Death:

P ′ | kill c | read c x.P ∗ & I = P ′ & I | read c x.P †

Here, a mortal process containing the seed of immor-
tality is listening and someone sends it the kill mes-
sage. Instead of it dying, the seed of immortality
is stripped and the process is immortalized (P † is a
partial function that converts a mortal process to an
immortal one). Immortalization is defined pointwise
on the structure of P , but is not defined if the process
contains a spawn !P , as immortals are not allowed to
reproduce.
This is basically all you need to know and the cal-

culus is Sound and Complete QED. �

3 Outline

Things that will do with Highlander.

• can’t have childrens (can’t propagate)

• Scott Domains

• Kilts, tartan

• peat

• scotch

• THE QUICKENING
(the first McCleod–based budget management
software)

��

Things that to do with Cloud computing stuff:

1. “in the cloud”

2. “to the cloud”

3. iCloud

4. grid computing

5. Amazon EC2 (fighters like the Amazons)

6. “as a service”

7. AJAX HTML5

Other things that aren’t either the one or the other:

1. Cleodsourcing

2. Qloud

Fun Fact. Highlander II is basically a complete
fuck-you to the first movie. Guess what! Now there’s
a planet called Zeist where all the immortals come
from.

4 Outline

* An implementation of MacLeod comput-
ing.

* The Quickening.
* Immortality-as-a-Service.
* Processes cannot fight on holy ground.
* Darknets? Good and Evil immortal pro-

cesses.
* Giving the semantics in terms of Scots Do-

mains.
Evil processes are processes that have gone rogue.

These processes must be eliminated, but we still need
to extract the information from them, hence we need
The Quickening to transfer this knowledge after the
evil process has been killed.
A major problem with immortal processes is when

a process stops responding to requests. This is what
is known in the literature as an evil process. Natu-
rally, since the process is immortal, it is not possi-
ble to simply kill the process. Additionally, even if

killing the process was possible, it would mean that
the information it held ——————– such as an im-
portant comment on Reddit ——————- would be
lost. To get around this problem, we propose the
following protocol, called The Quickening :
* First, two processes are selected for the game. A

one-on-one battle with only one winner. The specifics
of how this battle is an implementation detail, but a
popular choice is to use head reduction.
* That is all.

5 Theorems

theorem: Lightning kills ya!
proof: by conduction

6 Meta-Bibliography

6.1 Bibliography

��

SIGBOVIK 2013 Paper Review
Paper 22: MacLeod Computing

William Lovas, Pittsburgh Immortal Computing and Kombat, Univ. Partition
Rating: 11

2 enthusiastic thumbs up
Confidence: 3

8 dispassionate thumbs more or less sideways

Abstract

A review in three parts.

1 The Pun
The paper kicks it off strong: a recognizable reference tied into an obvious and groan-worthy

pun about something vaguely realistic and of dubious yet nonetheless current interest. Would

that all academic papers could hit the ground running so... (and I haven’t even started reading

the rest of the paper yet!)

2 The Turn
Jokes, references, fake math, and navel-gazing continue apace. But I found some typos.

3 The Prestige
The authors line provides the clincher: at least one hyphen, at least one Italian, at least one

title, and at least one number, a classic recipe for success. Moreover, I am somewhat familiar

with some of the work by some of the authors, and some of it is good.

A The Question
How about a scotch?

��

The (∞,1)-accidentopos model of

unintentional type theory

(Extended Abstract)

Carlo Angiuli

March 20, 2013

1 Introduction

Dependent type theory associates to any elements x, y of a type A an iden-
tity type x =A y, the type of proofs of equality of these elements. In PER
Martin-Löf’s extensional type theory, the identity type is a subsingleton inhab-
ited precisely when x and y are judgmentally equal. Semantically, types are
thus sets equipped with equivalence relations given by their identity types.

Groupoid Martin-Löf’s intensional type theory (ITT), in contrast, does not
explicitly prohibit this type from having other elements; Hofmann and Streicher
showed in [4] that any closed intensional type A can be interpreted as a groupoid
�A�, where terms x, y : A are objects �x�, �y� ∈ �A�, and �x =A y� is the discrete
groupoid hom�A�(�x�, �y�).

In general, the identity type itself can have non-trivial morphisms, resulting
in an infinite tower of non-trivial identity types. This observation has given rise
to the Homotopy Type Theory project [1], which has provided new semantics
of Infinity-Groupoid Martin-Löf’s intensional type theory in simplicial sets [5],
or globular strict [8] or weak ∞-groupoids.

This work explores the lesser-known unintentional type theory (UTT), which

has a mistaken identity type x:A
?≈ y:B of inadvertent conflations of the terms

x : A and y : B. The mistaken identity type greatly increases the expres-
sive power of UTT by internalizing many proofs which previously required
metametatheoretic techniques (e.g., user error on a blackboard).

This abstract proceeds as follows: In section 2, we discuss a number of similar
logics, and the relationship between the homotopy type theory project and UTT.
In section 3, we review the rules of UTT. In section 4, we resolve affirmatively
the conjecture that UTT is an internal language of (∞,1)-accidentoposes.

��

2 Related Work

The mistaken identity type can be seen as a generalization of the handwaving
and drunken modalities described by Simmons [6]. The primary difference is
that all UTT judgments are handwaving judgments in Simmons’s sense, since
one can never be certain that important details have not been handwaved away.
(The drunken modality is not expressible directly in UTT, though it frequently
leads to inhabitants of the mistaken identity type.)

UTT is similar in strength to Falso [2], although UTT is a constructive logic.
The Univalent Foundations project has successfully used ITT as a “natively

homotopical” language for proving theorems about spaces [7]. As in homotopy
type theory, UTT has an infinite tower of iterated mistaken identity types repre-
senting the compounding nature of errors. We expect that corresponding results
should be provable in UTT, such as the Freudenthal suspension-of-disbelief theo-
rem (that, within a certain range of plausibility, it is possible to convince oneself
of dubious results).

3 Syntax

Most of the rules of unintentional type theory are identical to those of ordinary
type theory, as in [3].

Given any two terms, it is possible to inadvertently conflate them.

Γ
 M : A Γ
 N : B

Γ
 (M :A
?≈ N :B) type

?≈ F

Given any reason to conflate two terms, they can be inadvertently conflated;
notice, however, that the original reason is subsequently forgotten in the proof.

Γ
 M : A Γ
 N : B Γ
 FIXME: are these equal?

Γ
 (M :AN :B) : (M :A
?≈ N :B)

?≈ I

Lastly, given a mistaken conflation between two terms, the eliminator allows
us to replace the former term by the latter anywhere inside another term P
whose type may depend on the former.

Γ
 M : A Γ
 p : (M :A
?≈ N :B) Γ, x : A
 B type Γ
 P [M/x] : B[M/x]

Γ
 (p,x.P)

: B[N/x]
?≈ E

(p,x.P) ≡ P [N/x]

Given a mistaken identity across different types, this eliminator computes to
an ill-typed term; even when A = B, it can easily result in a contradiction. In
fact, mistaken identities can quickly propagate through arbitrary types without
leaving any trace in the proof term. This is intended behavior, since a UTT
judgment Γ
 M : A as the assertion that, as far as the author can tell, M
ought to have type A in Γ.1

1In UTT, any evidence to the contrary is just, like, your opinion, man.

�	

4 Semantics

An (∞, 1)-accidentopos is a higher-dimensional analogue of a 1-accidentopos, a
category which behaves like the category of sheeshes on a spacing-out (i.e., a
category whose objects are frustrations that an inadvertent mistake has been
made, and whose morphisms are transformations from these frustrations to error
correction).

The (∞, 1)-accidentopos model of UTT has as objects all globular sets which
could be confused with an ∞-groupoid, and as morphisms all likely functors
between them.

As usual, contexts are modeled as objects, dependent types as fibrations,
terms as sections of those fibrations, and uncaught errors as retractions of pa-
pers. Naturally, mistaken identities are modeled by object misclassifiers.

We only sketch the proof of the descent condition.

Acknowledgements

Thanks to Chris Martens for suggesting that I study UTT, and the Univalent
Foundations program for making it seem like a wise idea.

References

[1] Homotopy type theory website. http://www.homotopytypetheory.org,
2011.

[2] Amarilli, A. Falso. http://www.eleves.ens.fr/home/amarilli/

falso/.

[3] Hofmann, M. Syntax and semantics of dependent types. In Semantics and
Logics of Computation (1997), Cambridge University Press, pp. 79–130.

[4] Hofmann, M., and Streicher, T. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory (1998), Oxford Uni-
versity Press.

�

[5] Kapulkin, C., Lumsdaine, P. L., and Voevodsky, V. The simplicial
model of univalent foundations. http://arxiv.org/abs/1211.2851, Nov.
2012.

[6] Simmons, R. J. A non-judgmental reconstruction of drunken logic. In
The 6th Biarennial Workshop about Symposium on Robot Dance Party of
Conference in Celebration of Harry Q. Bovik’s 0x40th Birthday (2007).

[7] Univalent Foundations Program. The HoTT Book. http://github.
com/hott/book, in progress.

[8] Warren, M. The strict ω-groupoid interpretation of type theory. In Mod-
els, Logics and Higher-Dimensional Categories (2011), CRM Proc. Lecture
Notes 53, Amer. Math. Soc., pp. 291–340.

��

��

Track 3

Artificial Stupidity

1. You Only Learn Once: A Stochastically weighted AGGRegation Approach to
Online Regret Minimization
danny “vato loco” m4turana and d4vid “the H is silent” f0uhey
Keywords: yolo, swag, swagger, dat, bound, machine learning, ICML, brogrammerproblems, noregrets, belieber

2. I Lost The Game, and So Will You: Implications of Mindvirus Circulation in a
Post-Singularity World
Shomir Wilson
Keywords: singularity, game, experiment

3. Fandomized Algorithms and Fandom Number Generation
Lindsey Kuper and Alex Rudnick
Keywords: fandomized algorithms, fandom numbers, fentropy

��

∼You Only Learn Once ∼
A Stochastically Weighted AGGRegation approach to online regret

minimization

danny “vato loco” m4turana dimatura@cmu.edu

straight outta south hemisphere

d4vid “the H is silent” f0uhey dfouhey@cs.cmu.edu

212 REPRESENT

Abstract

YOLO YOLO YOLO
2 DEEP 4 U
3 DEEP 5 U

keywords:#yolo, #swag, #swagger,
#dat #bound, #machinelearning, #bro-
grammerproblems, #noregrets, #belieber

Figure 1. #Swagspace.

1. Introduction

We consider the online learning problem, in which
the learner receives a life experience x and returns
a tumblr post, facebook status, or picture (e.g., self-
mirror pic) y. Once the learner makes the post,
the internet community responds with a loss function
�t : Dom(Y) → R that evaluates the swag of the
learner’s post.

Proceedings of the 7 th ACH SIGBOVIK Special Interest
Group on Harry Quechua Bovik. Pittsburgh, PA, USA
2013. Copyright 2013 by the author(s).

Algorithm 1 you only learn once / online learning

initialize regret Rt ← 0
t ← 1
for t = 1 to death do
something happens xt

post tumblr yt ← f(xt, yt)
receive loss function �t(yt)
update regret Rt ← Rt−1 + �t(yt) Rt ← 0 yolo lol
t ← t+ 1

end for

Figure 2. #swag #yolo #doublewrapping #doublebagging
#STDROCCurve #instagram

In this paper we derive an efficient online learning al-
gorithm, SWAGGR, with pretty tight regret bounds
of O(LOL) for every problem. We achieve this by
projecting the well-known Randomized Weighted Ma-
jority algorithm (Littlestone & Warmuth, 1992) into
#swagspace. Swagspace is related to the space in-
duced by the well-known Kardashian Kernel (Fouhey
& Maturana, 2012), except in that is accessible to any-
body with a smartphone.

��

Title Suppressed Due to Excessive Swag

Algorithm 2 brogrammers be crushin this code

Input: data xi, size m
repeat

Initialize noChange = true.
for i = 1 to m− 1 do
if xi > xi+1 then

Swerve xi and xi+1

noChange = false
end if

end for
until noChange is true

Table 1. Equivalences of online learning approaches #so-
cialmedia #instagram

Facebook Twitter Tumblr

Compute Subgradient Like Retweet Reblog
Convex Projection Comment Reply Note

2. On YOLO Learning

We present our YOLO learning framework, SWAGGR,
in Algorithm 1. For the sake of notational convenience,
we assume that the online community is Tumblr. We
have also however have had success using Facebook
as well. We show the correspondences between the
various problem settings in Table 1.

2.1. Theoretical Analysis - YOLO Regret
Bound

We now prove a regret bound on SWAGGR, and
demonstrate that for all times t ∈ R+ considered by
the agent, SWAGGR achieves provably minimal re-
gret. We begin with a review of regret minimization;
following this, we present an intuitive and powerful
proof of our regret bound. Let X be an instance space
and Dom(Y) be an output space. Let l1, . . . , lN be a
set of loss functions with li ∈ Dom(Y) → R and let Π
be the set of experts from which the algorithm picks a
prediction. Finally, let π∗ be the expert that in retro-
spect, incurs the least loss

∑N
i=1 li(π

∗) over time. We
aim to produce a sequence of experts π1, . . . , πN that
minimize the average regret, or difference between our
loss and the best expert’s loss, or:

RN =
1

N

N∑
i=1

li(πi)− li(π
∗) (1)

Much research work has been devoted developing algo-
rithms that are no-regret (i.e., limN→∞ RT = 0), and
a great deal of effort has been spent on proving this
fact for new algorithms. Our YOLO learning bound

achieves this no-regret property, and in contrast to
past work, the regret bound is easily proved.

Proof. Consider the third-to-last line in Algorithm 1.
By definition the instantaneous regret is zero, and so
the average regret is also zero. #YOLO #2SWAG4U

Note that previous work has either focused on convex
sets of experts or has showed results that only hold for
small numbers of experts. By adhering to the SWAG
philosophy and ignoring regret, we achieve state-of-
the-art performance without such limitations.

3. Application - SVM Learning with
SWAGGR

It is well known that in Swagspace one does not need
condoms (see Fig. 2); we present an analogous anal-
ysis for Support Vector Machines (SVMs). One suc-
cess story of online convex programming is the devel-
opment of online solutions to the SVM problem, ob-
viating the use of complex and expensive quadratic
programming (QP) toolkits. A generalization of our
SWAGGR algorithm also allows the general solution
to all quadratic programming problems. We com-
pare a high-SWAG approaches drinking 4-LOKO (a
high alcohol and caffeine beverage) with a state-of-the-
art quadratic programming solver, LOQO (Vanderbei,
1999) in Table 2. LOQO is better in only one cate-
gory (solving QPs), and 4-LOKO is better in 5 (alco-
hol content, swag, etc.). Clearly, the solution is to use
4-LOKO. Anecdotal evidence confirms that 4-LOKO
is indeed good at getting people to local minima (e.g.,
falling into ditches, etc.). #crunk

4. Discussion and Future work

The YOLOSWAGGR algorithm may in fact lead to
high regret later on in life. But that is beyond the
current planning horizon of most teenage agents. It
seems that perhaps it is necessary to accumulate re-
grets; then, when brain development reaches adult-
hood, these regrets can be processed to form better
policies. This superficially resembles the practice of
accumulating subgradients and taking a step in the
average direction, suggesting the validity of our ap-
proach.

References

Fouhey, David F. and Maturana, Daniel. The Kar-
dashian Kernel. In SIGBOVIK, 2012.

��

Title Suppressed Due to Excessive Swag

Table 2. How to choose a Quadratic Programming Toolkit. We present a comparison of LOQO (Vanderbei, 1999) and
our approach, 4-LOKO. Clearly 4-LOKO is better for solving QPs. #crunk #sizzurp #geTtiNItIn

Solves QPs Refreshing SWAG Banned by n states % Alcohol # LOKOs

LOQO � X 0 n = 4 0% 1
4-LOKO X � 5 n = 50 12% 4

Figure 3. #biebs #teen #swag #cute

Littlestone, Nick and Warmuth, Manfred K. The
weighted majority algorithm. In IEEE Symposium
on Foundations of Computer Science, 1992.

Vanderbei, Robert. Loqo user’s manual – version 3.10.
Optimization Methods and Software, 12:485–514,
1999.

Figure 4. #ferret #swag #yolo #class

Figure 5. Le Me, A maChiNE leARNer wit Mad boOsted
deCISion TREES n smokin like a a max-ent pRIoR. WhEre
u 3quentists noW? #iceburn #swag #classy #enlighted-
bymyownintelligence #euphoric

��

SIGBOVIK 2013 Paper Review
Paper 28: ∼ You Only Learn Once ∼

Robert Marsh, King Under The Mountain
Rating: 1 (weak accept)
Confidence: 3/4

There seems to be significant room for optimization in several of the core algorithms presented in

this paper. Since the SWAGGR algorithm ignores the loss function lt, a significant performance

improvement could be made by never making an attempt to recieve it. Similarly, since the regret

vector is initialized to 0 #noregrets #yolo #swag, it seems unnecessary to modify it. Not only will

this consume processor cycles, it may lead to worse cache performance.

In addition, a large body of prior work on swag-enhanced algorithms is ignored, most especially

that of Kay Ee Dollar-Sign HA! in her seminal Tik-Tok, “Moves Like Jagger” by Maroon 5, and

that of McJaggr himself during his tenure with The Institute for Applied Lithic Rotation.

The comparison of 4-LOKO to LOQO is somewhat unfair: this reviewer, at least, found LOQO

quite refreshing.

Finally, those pants are hideous and you should stop. Weak Accept.

��

��

�	

�

SIGBOVIK 2013 Paper Review
Paper 5: I Lost The Game, and So Will You:
Implications of Mindvirus Circulation in a
Post-Singularity World

JOSHUA, NORAD
Rating: STRONG ACCEPT. Confidence: DEFCON 1

WOULD YOU LIKE TO PLAY A GAME?
- TIC TAC TOE
- GLOBAL THERMONUCLEAR WAR
- STRONG ACCEPT.
- CONFIDENCE: DEFCON 1

HINT: THE ONLY WAY TO WIN IS NOT TO PLAY

��

Fandomized Algorithms and Fandom Number Generation

Lindsey Kuper Alex Rudnick

School of Transformative Works, Indiana University

{lkuper, alexr}@cs.indiana.edu

Abstract
We introduce the concepts of fandomness and fandomized algo-
rithms, discuss some of their applications, and demonstrate a prac-
tical fandom number generator.

Categories and Subject Descriptors Pairing [fandom/CS]; Rat-
ing [PG-13]

1. Spoiler warning
Fandomized algorithms make use of fandom numbers and fentropy
to perform useful, or at least emotionally satisfying, computation.
Here we discuss some of the most prominent applications for fan-
domized algorithms.

2. Fandomness and fandom variables
A fandom variable can take on a fandom number, but the genera-
tion of fandom numbers requires a source of fentropy. Thankfully,
there exist fentropic processes in nature, and we can typically sam-
ple from them over the Internet. Fentropy is a measure of the fan-
nishness of a fandom variable over time. The world’s technological
capacity to store and communicate fentropic information has in-
creased since the advent of the information age, especially since
Dreamwidth launched.

3. OTPs
OTPs are one of the most important applications of fandom num-
bers. In an OTP, a character is combined with another character
from a secret fandom pad, the one with whom it truly belongs
(mod 26). For characters c1 and c2, we denote such a pairing as
c1/c2. If the OTP key material is truly fandom (sampling from
/dev/ufandom, for instance, may be insufficiently fandom), the
true love of an OTP has been proven impossible to break.

4. Markov fandom fields
We may also wish to do inference over communities of interact-
ing fandom variables using a Markov fandom field and the head-
canon propagation algorithm, although it is MLP-hard in most
cases. However, we can perform approximate inference with loopy
headcanon propagation. Fandom-wanking is not guaranteed to ter-

$./fandom_number_generator.py
No numbers in fanwork #346401
YOUR FANDOM NUMBER: 286
from fanwork #369546
http://archiveofourown.org/works/369546

Figure 1: Sampling a fandom number from AO3.

minate in this case, and a consistent community-wide headcanon
may not emerge.1

5. A practical fandom number generator
We have developed a practical algorithm and implementation for
generating fandom numbers, which are a key component for any
fandomized algorithm. Our fandom number generator is available
at:

http://github.com/lkuper/fandomized-algorithms

A naturally occurring source of fentropy, Archive of Our Own
(AO3), supplies an ever-increasing amount of fandomness, cer-
tainly more than the current global demand for fentropy to power
fandomized algorithms.2 As fandomized algorithms become more
broadly deployed, further sources of fandomness may be required.

Our practical fandom number generator downloads a pseudo-
fandomly-selected transformative work from AO3, locates all of
the base-10 numbers in it, and then returns one of them at fandom.
If for some reason there are no fandom numbers present in a given
transformative work, we simply try another transformative work
until we find one.

This work would not be canon without the public availability
of sources of fentropy; the open publishing and reuse rights of
the transformative works on AO3 enable us to transform these
transformative works into transformative works of our own.

6. Season finale
As the dictum about software development goes, “shipping code
wins”. We have accepted this headcanon, but we realize that many
ponies in the computer science community remain squicked by it.

As such, we have provided an overview of fandomized algo-
rithms, fandomness, and fandom variables, and explored some of
their applications in computing. In upcoming seasons, we expect
that it will be revealed that fandom/CS is the OTP.

Acknowledgments
We would like to thank our beta readers.

References
[1] Archive of Our Own. URL https://archiveofourown.org/.

[2] Luis von Ahn or whatever.

1 The alert reader may have noticed that Tumblr is a platform for human
computation [2], performing loopy headcanon propagation at scale. Most
Tumblr traffic is used for applications in protein folding and computational
geophysics.
2 Google for “archive of our own”; do you not know how to do web

searches?3

3 Oh, fine. [1].

��

��

Track 4

Computer Vision(aries)

1. Optimal Coupling and Gaybies
Nicolas Feltman
Keywords: coupling, gaybies, neil patrick harris

2. Cat Basis Purrsuit
Daniel Caturana and David Furry
Keywords: Meow, mew, miao, compressed sensing

3. A Spectral Approach to Ghost Detection
Daniel Maturana and David Fouhey
Keywords: spectral and astral methods, trans-dimensional group lasso, ghosts, occult, hauntology, crystal
energy, supernatural, paranormal

��

Optimal Coupling and Gaybies

Nicolas Feltman

April 1, 2013

1 Abstract

Recent algorithmic advances in the homogenous coupling problem mean that
we can now compute optimal homocoupling for large datasets. This paper
presents two contributions. First, we find and present the best couples for
a dataset of 300 million. We then examine fundamental compatibility issues
with the resulting couples, and present a feasible workaround.

2 Introduction and Background

The automated identification of potential romantic couples (known gener-
ally as the coupling problem) has been an area of intense research. Under
a classic heterosexual model of romance, this problem is often refered to as
heterocoupling, or if you’re my grandmother1 FW: FW: RE: FW: The cou-
pling Problem the way GOD Intended!!!. It is well known that the bipartite
structure of heterocoupling means that optimal solutions are NP-hard, and
currently no practical approximation algorithms are known.

Alternatively, the homocoupling problem, which arises under homosexual
or gender-free models of romance, is solvable exactly in polynomial time, with
many tractable algorithms2 available. While these algorithms are known,
we are not aware of any attempts to compute optimal homocoupling for
realistic datasets, perhaps for previous lack of availability of such a dataset.

1The conservative one, not the hippy one.
2In particular OKC, A4A, and MH. For an overview of techniques, see Grindr et al.

��

Fortunately, thanks to Obamacare, a full index of all Americans and their
complete medical history was recently made available3 to the public.

3 Results of Homocoupling

We ran the OKC homocoupling algorithm on the Obamacare dataset. The
top five optimal couples are shown:

• Nicolas Feltman and Brad Pitt

• Nicolas Feltman and Neil Patrick Harris

• Nicolas Feltman and James Franco

• Nicolas Feltman and Andrew Garfield

• Nicolas Feltman and Taylor Lautner

4 Analysis of Homocoupling Results

One clear observation is to be made: although the algorithm rated the com-
patibility of every pair of Americans, it chose double-male pairs for the top
five results. This strange effect seems isolated to the upper tail of the com-
patibility distribution, as the mean compatibility of heterosexual and homo-
sexual pairs are almost identical. There don’t appear to be any other obvious
trends in top five couples beyond this.

That said, this double male trend warrants further discussion. While it
is well established that most mixed-sex pairs are capable of reproduction4,
vanishingly few same-sex pairs are capable of as much. This can of course
be attributed to Mother Nature’s well-documented homophobic bias (see
Figure 1).

3See My Grandma1 et al.
4See Birds et al.

��

Figure 1: Mother “family values” nature.

5 On Male-Male Reproduction

Since there exist several highly compatible male-male couples, it stands to
reason that the world would benefit from a way for these couples to produce
offspring. In the literature5, potential offspring of such relationships are
known as gaybies. The creation of gaybies is therefore of major scientific
importance.

We posit here that most of the problem of gayby creation can be re-
duced to simply creating a picture of the gayby in question6. And so for the
betterment of humanity, we present a method to do exactly that, using the
standard facemorphing techniques of computational photography.

5See Brüno et al.
6The rest is a matter of trivial genetic details, which should be no problem for a

competent biologist. It’s all rather elegant, and we’d say how to do it here, but there isn’t
enough space in this footnote.

��

6 Gayby Creation Results

We created the following gaybies for the top five couples found in section 3.
Once again, those are:

• Nicolas Feltman and Brad Pitt

• Nicolas Feltman and Neil Patrick Harris

• Nicolas Feltman and James Franco

• Nicolas Feltman and Andrew Garfield

• Nicolas Feltman and Taylor Lautner

Parent 1 Gayby Parent 2

��

Parent 1 Gayby Parent 2

7 Conclusion

As you can see, the results are pretty much a complete success. The gaybies
are as stunningly attractive as their parents.

�	

Cat Basis Purrsuit

Daniel Caturana dimatura@cmu.edu

David Furry dfouhey@cs.cmu.edu

The Meowbotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213

Abstract

Meow miao mew meow mew meow mew mew
meow miao meow meow mew meow meow
miau mew miao meeeow meow, miau meow
miao mew meeeeow mew miao miao miao.
Meow miao mew meow mew (MMM), meow
miao mew meow mew meow, meow meow
miao meow state-of-the-art meow meow.

Mew mew meow miao miao nyan nyan meow
mew. Meow meow miauw meow miao mew
meow, meiau meow meow mew miaou mii-
iaou. Miao meow meow mew miao meow
meow miao miao miau meow miau: meow
meow mew mew MMM meow miu meow
meow nyan meow mew meow.

1. Introduction

Everyone loves cats.

2. Related work

Fueled by the desire to take advantage of the Inter-
net’s cat lust, the last few years have seen a great deal
of feline-related work from the machine learning and
computer vision communities. These have ranged from
attempts to simulate a cat brain (Ananthanarayanan
et al., 2009) to using massive amounts of grad students
and computational resources to build visual cat detec-
tors (Le et al., 2011; Fleuret & Geman, 2008; Parkhi
et al., 2012).

In this paper we hope to take advantage of people’s
fascination for cats to achieve recognition and adora-
tion for minimum amounts of work.

Proceedings of the 7 th ACH SIGBOVIK Special Interest
Group on Harry Quechua Bovik. Pittsburgh, PA, USA
2013. Copyright 2013 by the author(s).

3. Method

One method is to use purrincipal catponent analysis,
in which we build a pawsitive definite matrix and ex-
tract its eigenvectors. But the problem is that it is not
spurrse. We want a spurrse basis 1. To get the spurrse
basis we use the latest in optimization algorithms, Cat
Swarm Optimization (CSO) (Chu et al., 2006). A vari-
ant of Particle Swarm Optimization (PSO) (Kennedy
& Eberhart, 1995), CSO has been used on many appli-
cations, including system identification (Panda et al.,
2011) and clustering (Santosa & Ningrum, 2009).

CSO is based on the behavior of cats. Through ex-
tensive research, it was found that cats spend most of
their time sleeping, giving humans dirty looks, and ob-
serving the environment. Only when a tasty animal or
laser pointer appears does the cat expend energy pur-
suing a target. CSO refers to these behavioral modes
as “seeking mode” (seeking something to attack) and
“tracing mode” (actively chasing a target). By ran-
domly sprinkling N cats in the M -dimensional solu-
tion space, letting them chase high-dimensional enti-
ties, and creating copies of the most fit cats 2, CSO
achieves significant gains over alternate optimization
approaches (e.g., Mewton’s method).

4. Application - Personalized Feline
Subspace Identification

To demonstrate the power and potential monetization
of our approach, we apply it to the task of Personalized
Feline Subspace Identification (PFSI), or the identifi-
cation of the feline subspace which best represents a
person. In addition to being of great theoretical in-
terest, PFSI has obvious monetary potential (due to
the cats – duh), meaning it is a problem of interest to

1Can haz spurrsity? Only if haz restricted isometry
property.

2DF: DM, can you please check whether this is ap-
proved by the animal research board. I’m pretty sure
trans-dimensional projection and copying of mammals is
prohibited under our funding contract.

�

Cat Basis Purrsuit

practitioners.

We take a collection of pictures of kitties (denoted K),
painstakingly collected by some poor graduate stu-
dent, and attempt to reconstruct a person’s face as
a linear sum of the kitties K. Note that we oper-
ate directly in the image domain, rather than in the
frequency domain with a furrier basis. This is be-
cause past experiments have left us with hairballs in
our mouth; we hope to find a suitable kernel to side-
step this issue, as was done with the Kardashian space
(Fouhey & Maturana, 2012). We apply our Cat Basis
Purrsuit approach to discover the spurrse basis that
best represents the image. We present visualizations
of the first n spurrse basis elements of a variety of
leaders and distinguished scientists in Fig. 1. In addi-
tion to forming a compact representation, we can also
train a discriminative classifier using the coefficients of
the catponents (e.g., to classify people into cat-egories,
such as “persian” or “tabby”); initial experiments sug-
gest that random furrests work well for this task.

5. Results and future work

We have only “scratched” the surface of the many pos-
sibilities for cat-based machine learning and pawttern
learning. In a journal version of this work, we hope to
horribly mangle cat-based machine learning and bring
its head as a present to someone in our household.

One possible further application is to extend this
method into the audio domain. This would be a more
principled version of works such as the “meow christ-
mas”3.

Similarly, CSO is limited to continuous domains; we
could extend it to develop furry logic systems for con-
trol.

Moreover, by feeding the output of our cat basis as
input features to another layer of our algorithm, we
can build Deep Cat Basis, which is closely related to
Hierarchical Feline Stacking; see figure 2.

While CSO is capable of dealing with complex nonlin-
ear problems we would prefer to formulate a convex
version of our cost function, in order to leverage the
power of our online convex programming algorithm,
SWAGGR (Maturana & Fouhey, 2013). See figure 3.

We hope this paper will ignite a revolution in feline-
based machine learning and artificial intelligence. In
anticipation of the deluge of research in this area we
have created a new venue for the presentation of this
work, the Conference in Advanced Technology and

3http://www.youtube.com/watch?v=vW6ggxViqqo

Figure 2. The Deep Cat Basis and Hierarchical Feline
Stacking.

Figure 3. A convex formulation.

Neural Information Processing Systems (CATNIPS).
This conference will be colocated with the 2013 “Steel
City Kitties” cat show in Pittsburgh, Pennsylvania.

References

Ananthanarayanan, Rajagopal, Esser, Steven K., Si-
mon, Horst D., and Modha, Dharmendra S. The
cat is out of the bag: cortical simulations with 109
neurons, 1013 synapses. In Proceedings of the Con-
ference on High Performance Computing Network-
ing, Storage and Analysis, SC ’09, pp. 63:1–63:12,
New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-744-8. doi: 10.1145/1654059.1654124. URL
http://doi.acm.org/10.1145/1654059.1654124.

Chu, Shu-Chuan, Tsai, Pei-Wei, and Pan, Jeng-
Shyang. Cat swarm optimization. In Proceedings of
the 9th Pacific Rim international conference on Ar-
tificial intelligence, PRICAI’06, pp. 854–858, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 978-3-540-
36667-6. URL http://dl.acm.org/citation.cfm?

id=1757898.1758002.

Fleuret, F. and Geman, D. Stationary fea-
tures and cat detection. Journal of Machine
Learning Research (JMLR), 9:2549–2578,
2008. URL http://fleuret.org/papers/

fleuret-geman-jmlr2008.pdf.

��

Cat Basis Purrsuit

Input Sum of first n Spurrse Purrincipal Catponents / Cat Bases
n = 1 n = 10 n = 100 n = 1000

Figure 1. We present the sum of the first n Purrincipal Catponents and use this to do personalized feline subspace
identification. Our results are empirically effective, intuitive, and cute (figure best viewed in color).

��

Cat Basis Purrsuit

Fouhey, David F. and Maturana, Daniel. The Kar-
dashian Kernel. In SIGBOVIK, 2012.

Kennedy, J. and Eberhart, R. Particle swarm op-
timization. In Proceedings of IEEE International
Conference on Neural Networks, volume IV, pp.
1942– 1948, 1995.

Le, Quoc V., Monga, Rajat, Devin, Matthieu, Cor-
rado, Greg, Chen, Kai, Ranzato, Marc’Aurelio,
Dean, Jeffrey, and Ng, Andrew Y. Building high-
level features using large scale unsupervised learn-
ing. CoRR, abs/1112.6209, 2011.

Maturana, Daniel and Fouhey, David F. You only
learn once: A stochastically weighted aggregation
approach to online regret minimzation. In SIG-
BOVIK, 2013.

Panda, Ganapati, Pradhan, Pyari Mohan, and
Majhi, Babita. Iir system identification us-
ing cat swarm optimization. Expert Systems
with Applications, 38(10):12671 – 12683, 2011.
ISSN 0957-4174. doi: 10.1016/j.eswa.2011.04.054.
URL http://www.sciencedirect.com/science/

article/pii/S0957417411005707.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawa-
har, C. V. Cats and dogs. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

Santosa, B. and Ningrum, M.K. Cat swarm opti-
mization for clustering. In Soft Computing and
Pattern Recognition, 2009. SOCPAR ’09. Interna-
tional Conference of, pp. 54 –59, dec. 2009. doi:
10.1109/SoCPaR.2009.23.

��

SIGBOVIK 2013 Paper Review
Paper 25: Cat Basis Purrsuit

Lord Pinnington, University of Oxford
Rating: 3.4 (weak accept)
Confidence: 4/4

This method presented in this paper is fundamentally novel, and the results are impressive. That

said, there are several small errors in execution and missed opporunities:

• It appears that they investigated mewton’s method, but there is no mention of higher-order

mouseholder methods. This needs to be adressed.

• I highly doubt that you could fit more than five kitties into one basis without negative inter-

actions, unless they were raised together.

• Personalized Feline Subspace Identification does seem like it would work for dog people.

• There should be a citation the work of Birmal et al. on catamorphisms over Kurilian algebras.

I would feel more confident in accepting this work if some of these issues can be adressed before

publication.

��

SIGBOVIK, APRIL 2013

A Spectral Approach to Ghost Detection
Daniel Maturana, Distinguished Lecturer in Parapsychology and Volology , David Fouhey, Senior

Ufologist and Ghost Hunter

Abstract—A large number of algorithms in optimization and machine learning are inspired by natural phenomena. However, so
far no research has been done on algorithms inspired by supernatural phenomena. In this paper we survey our groundbreaking
research on in this direction, with algorithms inspired on ghosts, astral projections and aliens, among others. We hope to convince
researchers of the value of not letting research be constrained by reality.

Index Terms—Spectral and Astral Methods, Trans-Dimensional Group Lasso, Ghosts, Occult, Hauntology, Crystal Energy,
Supernatural, Paranormal

�

1 INTRODUCTION

MAny algorithms in optimization and machine
learning are inspired by natural phenomena.

Some examples, in no particular order, include1

• Falling down a slope. [Robbins and Monro (1951)]
• Climbing up a hill. [Kernighan (1970)]
• Gravity [Rashedi (2009)]
• Iron cooling down [Hastings (1970)]
• DNA mutation and crossover [Goldberg (1989)],

[Rechenberg (1971)], [Smith (1980)]
• Immune system behavior [Farmer et al. (1986)]
• Meme spreading [Moscato (1989)]
• Ant colony exploration [Dorigo (1992)]
• Honeybee mating behavior [Haddad et al. (2006)]
• Bee colony exploration [Karaboga (2005)]
• Glowworm communication

[Krishnanand and Ghose (2009)]
• Firefly communication [Yang (2008)]
• Musicians playing in tune [Geem et al. (2001)]
• Mosquito swarms [Kennedy and Eberhart (1995)]
• Honeybee swarms [Nakrani and Tovey (2004)]
• Locust swarms [Buhl (2006)]
• Krill swarms [Gandomi (2009)]
• Cat swarms [Chu et al. (2006)]
• Magnetism [Tayarani (2008)]
• “Intelligent” water drops falling. [Shah (2009)]
• River formation [Rabanal (2008)]
• Frog leaping [Huynh (2008)]
• Monkey search behavior [Mucherino]
• Cuckoo search behavior [Yang and Deb (2009)]
• Bat echolocation [Yang (2010)]
• Galaxy evolution [Shah-Hosseini (2011)]
• Spirals [Tamura and Yasuda (2011)]

Clearly the bottom of this barrel has been thor-
oughly scraped. Therefore we propose to move to-
wards algorithms inspired by supernatural phenom-
ena. In this paper we survey our groundbreaking
work on algorithms on this area. We give a brief

• D. Fouhey and D. Maturana are with The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213.

1. After reading this list you may be inspired to create a hyper-
heuristic called “The Zoo Algorithm”. Don’t bother, we call dibs on
the idea.

synopsis of each of our main results and conclude
with some ideas for future research.

2 RELATED WORK

Outside of the occasional use of oracles, there is no
real use of supernatural phenomena within computer
science. The most closely related bodies of work are
ancient and esoteric methods of prediction such as
necromancy (performing prediction by posing queries
to the deceased), and multilevel modeling.

3 ALGORITHMS

3.1 A spectral approach to ghost detection

Ghost detection is a task that is currently painstak-
ingly done by humans, often with high false posi-
tive rate and astoundingly low true positive rates,
as documented in Ghost Hunters and Most Haunted
USA. It is possible these researchers have been using
unsuitable priors on ghost presence. We proposed to
use the proven effectiveness of machine learning and
computer vision to build a system for automatic ghost
detection.

As can be seen in Figure 1, local “spectral” power
is a strong cue to ghost presence. We created a system
based on spectral analysis. We trained a Support
Vector Machine with thousands of labeled examples
to detect ghosts. Some example detections showing
the effectiveness of our approach are shown in Figure
2.

3.1.1 Application: automatic ghost removal

Often ghosts, orbs and other supernatural appear-
ances can show up and ruin otherwise perfectly fine
pictures. We have developed a Photoshop plugin to
automatically detect and remove these annoyances.
An example result is shown in Figure 3.

��

SIGBOVIK, APRIL 2013

Fig. 1. Ghosts.

Fig. 2. Example detections.

3.2 Paranormal distribution modelling
The so-called “Normal” distribution is a relatively
well known probability distribution function used to
model various phenomena such as (TODO). It is not
very interesting, which is why we propose to replace
it with the Paranormal distribution. The formulation
was inspired by the terrible and forbidden secrets in a
manuscript found among the ruins of a nameless city
in Iran.

X ∼ PN(a,d ,v�
p
,↖o,r)

We can not write out the analytic formula for this
distribution; we foolishly tried to derive it but were
nearly driven mad by the dark and twisted symbols
contained within. The best we can do to convey the
idea is the diagram in Figure 4.

3.2.1 Occult variables
While indubitably powerful, the expressiveness of the
paranormal distribution is limited by its unimodality.
To enhance the power of paranormal distributions we
introduce mixtures of paranormal distributions:

Z ∼ Mult(T1, . . . ,TK)

X|Z ∼ PN(ak,dk ,v�
kp,↖ko,rk)

where Z is an occult variable (also known as “latent”
or “hidden” variables in less esoteric literature) that

Fig. 3. Automatic ghost removal.

Fig. 4. The normal (left) and paranormal (right) distri-
butions.

indexes the parameters of the Paranormal distribution
(see Figure 5). Naturally, estimation in such a model
is fiendishly complex. We resort to maximizing the
likelihood with the esoteric optimization algorithms
outlined in Section 3.4.

Fig. 5. Mixtures of paranormal distributions with occult
variables.

3.3 Dimensionality shifting with astral projections

There are several algorithms in the literature to reduce
the dimensionality of the data with discriminative or
informative projections, such as principal component
analysis (PCA) or linear discriminant analysis (LDA).
There are also various kernel algorithms to implicitly
or explicitly increase the dimensionality of data to a
Hilbert space that increases class separability. But no
algorithms exist so far to trascend and shift between
dimensions. We propose to achieve this by projecting
the data onto the astral plane. In the astral plane
everything is possible: see Figure 6. As a useful side
effect of this approach we can estimate the quality of
the projection by its OOBE (Out Of Body Error).

��

SIGBOVIK, APRIL 2013

Fig. 6. Projection onto the Astral plane.

3.4 Esoteric optimization methods

The methods described above often require the solu-
tion of high-dimensional, trans-dimensional and non-
linear optimization problems. To solve them we have
developed various novel optimization algorithms.

3.4.1 Supernatural gradient descent via demon invo-
cation

The so-called “Natural” gradient descent algorithm
[Amari (1999)] is a popular variation of gradient de-
scent for optimization, with an update written as

xn+1 ← xn − γn
(
JTJ

)−1 ∇f(xn)

we propose a supernatural gradient descent instead:

xn+1 ← xn − γn
−1∇f(xn)

In this algorithm we replace JTJ with an invocation
of demons that will rapidly drag our solutions to the
depths of hell. A necessary condition for this to work
is the sacrifice of at least one goat, a practice first
popularized in the Deep Belief Net literature. We con-
jecture the amount of livestock that must be sacrificed
is proportional to the difficulty of the problem, i.e.,
different classes of problems may be characterized by
their goat-complexity.

3.4.2 ALIENS

The last resort. See Figure 7.

4 CONCLUSION AND FUTURE WORK

We have summarized our groundbreaking work on
algorithms inspired by supernatural phenomena. We
are currently working on various new papers in this
vein, described below.

4.0.3 Learning Hauntologies

Learning ontologies is a popular topic in the Artificial
Intelligence literature. We propose to learn Hauntolo-
gies, a related but more esoteric and powerful way to
describe knowledge.

Fig. 7. ALIENS

4.0.4 Crystal-energy-based models
Energy-based models are a popular way to de-
scribe dependencies between variables. However in-
ference in these models is often intractable. We pro-
pose Crystal-energy-based models, which leverage
the magical healing power of crystals to solve this
problem.

4.0.5 Supernatural K-optimality
We are currently studying the Kabbalah, arguably
the most K-optimal esoteric text, with the
hopes of applying this deep esoteric knowledge
to the study of Kardashian Kernel methods
[Fouhey and Maturana (2012)].

REFERENCES
[Chu et al. (2006)] Shu-Chuan Chu, Pei-Wei Tsai, and Jeng-Shyang

Pan. Cat swarm optimization. In Proceedings of the 9th Pacific Rim
international conference on Artificial intelligence, PRICAI’06, pages
854–858, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 978-3-
540-36667-6. URL http://dl.acm.org/citation.cfm?id=1757898.
1758002.

[Dorigo (1992)] M. Dorigo. Optimization, Learning and Natural Al-
gorithms. Politecnico di Milano, Italie, 1992.

[Farmer et al. (1986)] J.D. Farmer, N. Packard, and A. Perelson.
The immune system, adaptation and machine learning. Physica
D, 22:187–204, 1986.

[Geem et al. (2001)] Z.W. Geem, J.H. Kim, and G.V. Loganathan. A
new heuristic optimization algorithm: harmony search. Simula-
tion, 76:60–68, 2001.

[Goldberg (1989)] D.E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Kluwer Academic Publishers,
1989. ISBN 0-201-15767-5.

[Haddad et al. (2006)] O. B. et al. Haddad, Abbas Afshar, and
Miguel A. Mario. Honey-bees mating optimization (hbmo)
algorithm: a new heuristic approach for water resources op-
timization. Water Resources Management, 20:661–680, 2006.

[Hastings (1970)] W.K. Hastings. Monte carlo sampling methods
using markov chains and their applications. Biometrika, 57:97–
109, 1970.

[Huynh (2008)] Thai-Hoang Huynh. A modified shuffled frog
leaping algorithm for optimal tuning of multivariable pid con-
trollers. In Industrial Technology, 2008. ICIT 2008. IEEE Interna-
tional Conference on, pages 1–6, April.

[Karaboga (2005)] D. Karaboga. An idea based on honey bee
swarm for numerical numerical optimization. Technical Report-
TR06, 2005.

��

SIGBOVIK, APRIL 2013

[Kennedy and Eberhart (1995)] J. Kennedy and R. Eberhart. Par-
ticle swarm optimization. In Proceedings of IEEE International
Conference on Neural Networks, volume IV, pages 1942–1948,
1995.

[Kernighan (1970)] R. Kernighan. An efficient heuristic procedure
for partitioning graphs. Bell System Technical Journal, 49:291–307,
1970.

[Krishnanand and Ghose (2009)] K. Krishnanand and D. Ghose.
Glowworm swarm optimization for simultaneous capture of
multiple local optima of multimodal functions. Swarm Intelli-
gence, 3:87–124, 2009.

[Moscato (1989)] P. Moscato. On evolution, search, optimization,
genetic algorithms and martial arts : Towards memetic algo-
rithms. Technical Report C3P 826, 1989.

[Mucherino] Antonio Mucherino. Climbing trees like a monkey.
http://www.antoniomucherino.it/en/research.php.

[Nakrani and Tovey (2004)] S. Nakrani and S. Tovey. On honey
bees and dynamic server allocation in internet hosting centers.
Adaptive Behavior, 12, 2004.

[Rechenberg (1971)] I. Rechenberg. Evolutionsstrategie – Opti-
mierung technischer Systeme nach Prinzipien der biologischen Evo-
lution. 1971. ISBN 3-7728-0373-3.

[Robbins and Monro (1951)] H. Robbins and S. Monro. A stochas-
tic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951.

[Shah-Hosseini (2011)] Hamed Shah-Hosseini. Principal compo-
nents analysis by the galaxy-based search algorithm: a novel
metaheuristic for continuous optimisation. International Journal
of Computational Science and Engineering, 6:132–140, 2011.

[Smith (1980)] S.F. Smith. A Learning System Based on Genetic Adap-
tive Algorithms. University of Pittsburgh, 1980.

[Tamura and Yasuda (2011)] K. Tamura and K. Yasuda. Spiral dy-
namics inspired optimization. Journal of Advanced Computational
Intelligence and Intelligent Informatics, 15:1116–1122, 2011.

[Yang (2008)] X.-S. Yang. Nature-Inspired Metaheuristic Algorithms.
Luniver Press, 2008. ISBN 1-905986-28-9.

[Yang (2010)] X.-S. Yang. A New Metaheuristic Bat-Inspired Algo-
rithm http://arxiv.org/abs/1004.4170, in: Nature Inspired Cooperative
Strategies for Optimization (NISCO 2010) (Eds. J. R. Gonzalez et
al.), Studies in Computational Intelligence,. Springer, Berlin, 2010.

[Yang and Deb (2009)] X.-S. Yang and S. Deb. Cuckoo search via
Lvy flights, in: World Congress on Nature and Biologically Inspired
Computing (NaBIC 2009). IEEE Publication, USA, 2009.

[Shah (2009)] Shah-Hosseini, Hamed (2009) “The intelligent water
drops algorithm: a nature-inspired swarm-based optimization
algoirthm”. International Journal of Bio-Inspired Computaton
1 (1/2): 71-79.

[Rashedi (2009)] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S.
(2009). “GSA: a gravitational search algorithm”. Information
Science 179 (13): 2232-2248.

[Gandomi (2009)] Gandomi, A.H.; Alavi, A.H. (2012). “Krill Herd
Algorithm: A New Bio-Inspired Optimization Algorithm”.
Communications in Nonlinear Science and Numerical Simu-
lation. doi:10.1016/j.cnsns.2012.05.010.

[Tayarani (2008)] Tayarani, M. H.; Akbarzadeh, M. R.. “Mag-
netic Optimization Algorithms a new synthesis”. IEEE World
Congress on Evolutionary Computation, 2008.(IEEE World
Congress on Computational Intelligence).

[Rabanal (2008)] Using River Formation Dynamics to Design
Heuristic Algorithms by Pablo Rabanal, Ismael Rodrguez and
Fernando Rubio, Springer, 2007. ISBN 978-3-540-73553-3

[Buhl (2006)] Buhl, J.; Sumpter, D.J.T.; Couzin, D.; Hale, J.J.; Desp-
land, E.; Miller, E.R.; Simpson, S.J. et al. (2006). “From disorder
to order in marching locusts” (PDF). Science 312 (5778): 1402-
1406. doi:10.1126/science.1125142. PMID 16741126.

[Atashpaz-Gargari (2007)] Atashpaz-Gargari, E.; Lucas, C (2007).
“Imperialist Competitive Algorithm: An algorithm for opti-
mization inspired by imperialistic competition”. IEEE Congress
on Evolutionary Computation. 7. pp. 4661-4666.

[Amari (1999)] [Amari, S. and Douglas, S.C.] “Why natural gradi-
ent?”. Proceedings of the International Conference on Accous-
tics, Speech and Signal Processing, 1998. pp. 1213–1216 vol.2

[Fouhey and Maturana (2012)] “The Kardashian Kernel”. Proceed-
ings of SIGBOVIK 2012.

Daniel Maturana Daniel comes from Chile.
He is a devout Catholic and listens to reg-
gaeton.

David Fouhey David Fouhey received an
A.B. from Middlebury College in Computer
Science and Home Economics in 2011. He
is currently a Ph.D. student at the Robotics
Institute at Carnegie Mellon University. In his
spare time, he enjoys reality TV, American-
ized mexican food, and reading the New York
Times wedding section. In 2010, he served as
a U.N. Ambassador on a fact-finding mission
into the difference between yoga pants and
leggings.

��

�	

Track 5

Productivity and Meta-Productivity
(or “Synergistic Hyperparadigmatism”, as they say in the literature)

1. Really Amazing New Idea
Basquet Kase, Nought Job, and Ayn San Ety
Keywords: ideas, doggerel, dreck

2. METHOD AND APPARATUS FOR PRESSING SPACEBAR
Joshua A. Wise and Jacob D. Poer
Keywords: patent, spacebar, microcontrollers

3. METHOD AND APPARATUS FOR PUSHING SPACEBAR
Joshua A. Wise and Jacob D. Poer
Keywords: patent, lego, spacebar

4. Find a Separating Hyperplane With This One Weird Kernel Trick
(sponsored contribution)
Daniel Maturana and David F. Fouhey
Keywords: kernel methods, fast money, overfiing, bayesian monopoly

5. On n-Dimensional Polytope Schemes
David F. Fouhey and Daniel Maturana
Keywords: not pyramid scheme, polytope schemes, get rich fast, algebraic geometry, elimination ideals

6. DUI: A Fast Probabilistic Paper Evaluation Tool
Ivan Ruchkin and Ashwini Rao

7. Paper and Pencil: a Lightweight WYSIWYG Typesetting System
Paul Stansifer

�

Really Amazing New Idea

Basquet Kase∗

Kase’s Fine Recordings
West Portledge, Mainnesota

Nought Job
Card Boardbox
Street, Corner

Ayn San Ety
Crabgrass Hall University

East Westminster, South Northlands

Figure 1: Your estimate of the importance of this paper (left) significantly underestimates the actual importance of this paper
(right). (Figure not to scale; the left dot would not be visible.)

Abstract

Rarely in science is an idea so amazing that it catalyzes a rev-

olution in the way that people conduct the business of a field.

In physics, new models of the atom were such ideas. In busi-

ness, positive-sum economics was such. In kite-building,

ripstop nylon construction. In digging, the shovel.

In computer science, this is the paper. This is the idea. This

is our time to shine, and you’re along to watch us with your

beady and admiring eyes.†

CR Categories: 1.A.i [Foundational Computer Science]:

Really Basic Stuff—The Beginning

1 Introduction

Folks, listen up. We’re about to lay the knowledge on you.

Some of you may think you know the enormity of what we’re

about to talk about. You may believe that it will shake you to

your very core, your very foundations. That you shall be as

a house of glass cards in a windstorm-earthquake. In some

ways you are correct.

But in other ways, you are significantly underestimating the

impact that this work will have on you. And not merely 10×
underestimating; rather, 1010× or even 1010

10×. (See Fig-

ure 1 for a not-to-scale comparison.)

∗e-mail: ix@tchow.com
†It used to make us sick, how enthralled you were. It used to churn our

stomachs. But now that we’ve grown older, we find ourselves flattered in

your vapid gaze.

Specifically, we claim the following contributions for this

enormously important paper:

• A totally new idea that will change all science forever.

• The biggest thing in research – perhaps any research

ever – in all of recorded history.

• A minor technical correction to [McCann and Coauthor

2011], which does not influence their main result.

• The next step in the evolution of rational human

thought, that will influence the day-to-day life of ev-

eryone from the lowliest chimney sweep to the oracle

at Delphi.

So read on; do read on. Read until your eyes begin to glaze

and your lips dry – for your mouth will remain agape. We do

not care.

2 Background

The world of science is filled with moments of the utmost

importance, when small groups – in a flash of clarity – man-

age to push through the mire of current thought into the new

and exciting mire of future thought. These bold reformers of-

ten propose theories that appear to be nonsensical [Ray and

Ray 1997] or offensive [Longwood 2010], but prove out to

be wholey (Figure 2) relevant.

Khun [1962] called these reformations paradigm shifts, but

we call them what we are doing right now. There are not

enough emphasis devices available in this font to tell you

how amazing this is about to be for you.

��

Figure 2: Wholey relevant.

Though – protip [Unknown 2013] – we won’t need to tell you

how great our conclusion is. You’ll soon read it for yourself.

3 The First Idea

Look, we’ve all been there. Where you are, we mean.

Unenlightened, sitting on the curb of your metaphorical life,

feeling shallow and empty.

Feeling like a broken vessel, pouring out your essence so

pitifully upon the needy but ungrateful ground. Staring into

the distance through the metaphorical steam rising from the

hungry earth’s consumption of your metaphorical entrails’

metaphorical juices. Wondering when you will be able to

mend – if you will be able to mend.

Like a pitcher drained of Kool-Aid by urchins most unthank-

ful. Feeling as though your belly, once so full of Krazy-

berry Magical Colorchange Knowledge, is now a gaping and

stained void. Pondering which room you can burst into next.

Or if you even can burst at all. Or were ever able to burst.

Maybe it was all a beautiful dream.

Like a bucket, most recently inhabited by a competent slurry

of cement and sand, now all poured out and lonesome. You

are unrinsed. And someone should rinse you soon! (Perhaps

you can rinse yourself? But you can’t muster the energy to

tip and roll to the spigot.) This concrete will harden. You

will be ruined.

This is you.

You were once infinitely refilling, and now you have run out.

You once drank eternal from your own private fount of

knowledge. But it became a trickle. Then a drip. Then noth-

ing.

Hey, guess what. We’ve got an idea that’s going to turn you

around. Right around.

Around forever.

It’s going to seal your pot, fill your pitcher, wash your bucket,

and re-pressurize your knowledge aquifer.

But it’s too big for this page. Look right (Figure 3).

4 The Second Idea

Now you are filled with energy. You are ready for more. You

realize how important you are to the web of the world and the

scheme of movements of the metaphorical memetic heavens

– that internal cosmos of which we all, as a society, partake.

And help shove around, like a tradition-wheelbarrow.

For all that it is truly boundless, this energy of yours, it is

rate-limited. Like a token-bucket process. Or love. Or the

way they remember you with their tongues but not their eyes

– their rangy skulls all too evident under parchment-like skin.

Why are they looking at us? Did that one just move? I heard

a dry slither, like a snake through leaves.

These creatures wish to taste of our blood again. And this is

not a metaphorical mistake we – any of us – need to repeat.

What is to be done, so as not to exhaust our passions? There

remains a glint – a glimmer of hope. Just as a knife con-

cealed in the starched white sheets of an arranged marriage’s

conjugal bed offers four options‡ to cut short the unwanted

consummation.

Let us unbind the ceremony.

Figure 4.

Acknowledgements

We wish to thank the reviewers for their kind attempts to re-

fine our prose. Additionally, we applaud the gods of the clas-

sical pantheon for their wisdom in stepping aside to allow us

to ascend.

Peace out, y’all.

References

KUHN, T. S. 1962. The Structure of Scientific Revolutions.

University of Chicago Press.

LONGWOOD, J. T. 2010. The box and circles plot: a tool

for research comparison. Proceedings of ACH SIGBOVIK,

95–98.

MCCANN, J., AND COAUTHOR, N. A. 2011. Optimal im-

age compression. Proceedings of ACH SIGBOVIK, 75–78.

RAY, G., AND RAY, O. E., 1997. Time cube. No longer

available.

UNKNOWN. 2013. The protip cycle. Proceedings of ACH
SIGBOVIK, various.

‡more in the case of plural marriage

��

Figure 3: The first big idea.

��

Figure 4: The second big idea.

��

SIGBOVIK 2013 Paper Review
Paper 8: Really Amazing New Idea

Joshua Wise, Emarhavil Heavy Industries
Rating: BIG accept
Confidence: 5/4

Ideas contained within paper continue to amaze. However, I fear that the authors have understated

the importance of their work: for instance, they claim that “there are not enough emphasis devices
available in this font [to accurately describe the importance of their contribution]”, but they have

quite clearly missed the other emphasis devices available in modern-day
︷ ︸︸ ︷
typesetting packages.

Other emphasis devices are also available, with additional effort, indicating that the authors may

have rushed to publication before completing a true analysis of related work.

Regardless, the magnitude of the true result within is substantial, and deserves commendation.

Enlightened accept.

��

��

��

Find a Separating Hyperplane With This One Weird Kernel Trick
(Sponsored contribution)

Daniel Maturana dimatura@cmu.edu

David F. Fouhey dfouhey@cs.cmu.edu

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA 15213

Figure 1. Statistics professors hate him!

Abstract

Pennsylvania Machine Learners are getting
ripped off by not knowing this one weird ker-
nel trick. Local graduate student discovers
one weird kernel trick to make $100/hr while
keeping his stipend!

1. Introduction and Related Work

What is Kim’s secret to keeping off the pounds while
pregnant? See (Fouhey & Maturana, 2012) for one
weird trick for minimizing your L2 norm while repro-
ducing!!! What is her yummy and delicious superfood?
Find out at: http://www.oneweirdkerneltrick.com
http://www.oneweirdkerneltrick.com

63-year-old patriot discovers “weird” trick to end slav-
ery to the Bayesian monopoly. Discover the under-
ground trick he used to slash his empirical risk by
75% in less than 30 days. . . before they shut him down.
Click here to watch the shocking video! Get the Shock-
ing Free Report!

http://www.oneweirdkerneltrick.com

http://www.oneweirdkerneltrick.com

Proceedings of the 7 th ACH SIGBOVIK Special Interest
Group on Harry Quechua Bovik. Pittsburgh, PA, USA
2013. Copyright 2013 by the author(s).

http://www.oneweirdkerneltrick.com

Figure 2. Princeton Professor unlocks key to asymptotic
bounds. Are you and your family ready to approach in-
finity with the help of Acai extract? Buy this super-
food now at http://www.oneweirdkerneltrick.com http:
//www.oneweirdkerneltrick.com

Cornell professor describes the five signs that you
will overfit and die. IBM doesn’t want you to
know these signs so you will overpay for expert
advice. Find the white paper they wanted buried at
http://www.oneweirdkerneltrick.com

http://www.oneweirdkerneltrick.com

http://www.oneweirdkerneltrick.com

Are you ready for a risk crisis? MIT professor says
“empirical risk will shoot through the roof” and angry
mobs will kill your family before your own eyes!!!
Find out how to prepare for the final risk crisis at:
http://www.oneweirdkerneltrick.com

http://www.oneweirdkerneltrick.com

References

Fouhey, David F. and Maturana, Daniel. The Kar-
dashian Kernel. In SIGBOVIK, 2012.

��

On n-Dimensional Polytope Schemes

David F. Fouhey dfouhey@cs.cmu.edu

Daniel Maturana dimatura@cmu.edu

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA 15213

Abstract

Pyramid schemes are a well-known way of
taking bundles of money from suckers. This
paper is not about them. Although on first
inspection, this paper sounds like it is about
pyramid schemes, we promise that it is not.

In this work, we define and analyze n-
Dimensional Polytope schemes, which gen-
eralize pyramid schemes, but are not pyra-
mid schemes. We derive several theoretical
and empirical results demonstrating the great
opportunities offered by our n-Dimensional
Polytope Schemes. In particular, we demon-
strate substantially superior growth potential
in contrast to all previously published work.
In addition to being of theoretical interest,
these results mean that you can stay at home
and make money in your spare time!

1. Introduction and Related Work

This is not a pyramid scheme. This is an easy
way for you to make money. It is not related
to a pyramid scheme because it is a polytope
scheme. For a comparison, please see Fig. 2

If you want guaranteed financial freedom and
personal fulfillment from algebraic geometry,
sign up now to invest in our gift-giving invest-
ment scheme.

2. On High Dimensional Polytopes and
Schemes

In machine learning and statistics, using lots of dimen-
sions almost always causes issues; this is known as the
curse of dimensionality. For instance, distance func-
tions may not behave appropriately (Aggarwal et al.,

Proceedings of the 7 th ACH SIGBOVIK Special Interest
Group on Harry Quechua Bovik. Pittsburgh, PA, USA
2013. Copyright 2013 by the author(s).

Figure 1. Earnings potential (log scale) as a function of the
dimension of the polytope and the number of levels.

2001) and various counterintuitive results may arise
(Bishop, 2007). There has also been seminal work
(Fouhey & Maturana, 2012) on a parallel concept of a
“Kurse of Dimensionality”, stemming from a desire to
have access to certain subspaces of (R−Q)∞ without
appearing on reality TV. In it, the authors propose a
novel Kardashian Kernel and apply it blindly to prob-
lems determined by pattern-matching in the index of
a machine learning textbook.

Irrespective of previous work by crusty academics,
in this particular case, the so-called-curse becomes a
blessing to work in your favor! You can harness the
latest in rigorous statistics and mathematics discov-
ered by two computer vision scientists to make money
at home while doing no work!

2.1. Generalization of the standard model

In the classic 2-dimensional polytope model, one has
to recruit k people for the model. This directly ex-
tends to the a generalized n-dimensional case in which
one has to kn−1 people to make up money. This yields
a recurrence relation giving the number of entities in-

�	

Fouhey, Maturana: On n-Dimensional Polytope Schemes

Figure 2. A comparison of our scheme and the traditional pyramid scheme. In a pyramid scheme, dollars travel up a
metaphorical 2-dimensional simplex; this results in money lost for participants at the bottom and weeping and gnashing
of teeth. In a polytope scheme, points (redeemable for dollars) travel up a metaphorical n-dimensional simplex; this
results in guaranteed money at home via algebraic geometry

volved in a n-Dimensional Polytope Scheme at the l-th
level:

T (1) = 1

T (l) = kn−1T (l − 1),
(1)

or in closed form, T (l) = (kn−1)l

We present graphs of your earnings in Fig. 1. We
are working so hard to spread the wealth to you!

2.2. In Comparison to Pyramid Schemes

The polytope scheme is not a pyramid scheme1. In a
pyramid scheme, cash is pushed upwards a metaphor-
ical pyramid and the leaders run off with the money
as the scheme collapses due to a lack of new marks;
in a polytope scheme, points are pushed up a high-
dimensional polytope and everyone benefits. This is
illustrated in Fig. 2.

3. Guaranteed Income via Algebraic
Geometry

Since Hilbert’s celebrated proof via elimination ideals
that his creditors are owed no money (Hilbert, 1920),
it has been accepted that one can eliminate one’s debt
via algebraic geometry. Nonetheless remains an open
question whether one can induce a positive net flow
via similar reasoning under more general conditions.
In this section, we answer positively, and provide the
first known proof of how you can make money at
home via algebraic geometry.

Theorem 1. Let R be a ring and let x be a set of

1Unlike Bayesian Multi-Level Marketing Models
(MLMM), which are totally a pyramid scheme.

N indeterminates. Let the non-empty set of sources
of money be an ideal $ ⊆ R[x] and the current bank
account be b ⊆ R[x] such that the two have disjoint
varieties V ($) ∩ V (B) = ∅ (i.e., or the solutions to $
and your bank account do not intersect). Consider the
ideal b generated by your bank account, b. Then the
multiplication of your bank account’s ideal b and the
n-Dimensional Polytope scheme (p ∈ R[x]) yields an
ideal s = bp such that V ($) ⊆ V (s) (i.e., the solutions
to $ are now in your grasp).

Proof. By definition (see supplementary material),
p = {0R}. From definitions,

s = {p1b1 + · · ·+ pnbm : pi ∈ p, bj ∈ b}. (2)

Since 0R is the only element of p, s = {0}, and V (s) =
RN . Therefore, for any ideal $, V ($) ⊆ V (s).

This theorem shows that if there are any sources
of money, their solutions can be covered via the n-
Dimensional Polytope’s ideal, p = {0R}. There-
fore, this provides a guaranteed source of income, ir-
respective of your current bank account. This cor-
rects already-known deficiencies in previous money-
making schemes, e.g., (Hilbert, 1920; Zariksi, 1950;
Ponzi, 1920).

On first glance, Theorem 1 resembles the famous
Banach-Tarski Paradox (Banach & Tarski, 1924), in
which a hypersphere of fiat currency is doubled; how-
ever, note that we do not make the fiat-currency as-
sumption, and our proof works in gold and silver-
standard frameworks.

�

Fouhey, Maturana: On n-Dimensional Polytope Schemes

3.1. How does this make money?

See, Theorem 1 says it makes money so it has been
proved.

3.2. But really does it make money?

This makes money, but the best time to join is now!
You do not want to be pursuing some Ph.D. when all
your friends are pouring crystal all over benjamins in
the Cayman islands.

4. Empirical Results

Although our previous derivation of Theorem 1 is suf-
ficient to demonstrate our idea’s validity, we have be-
gun empirical evaluations. We are testing the polytope
scheme using a variant of the “One Weird Trick” (Mat-
urana & Fouhey, 2013) scheme to attract investors,
as well as direct-to-consumer marketing. This “One
Weird Kernel Trick” technique overcomes many issues
with pyramid schemes; past work, e.g., that of Ponzi
(Ponzi, 1920), fails by running out of investors in the
instance space X ; in the “One Weird Trick” model, one
can use a feature map φ mapping into an feature space
F to find a potentially infinite number of recruits for
the scheme.

Does this make any sense? No, but researchers at The
University of Carnegie Mellon2 are already using this
to make money while they watch cat videos. The time
to join is now!

Our experiments are in its infancy, and now is
the best time for you to join!. If you want personal
wealth and fulfillment via algebraic geometry, fill out
the attached form send your first deposit to:

SMART Investing

CMU RI -- EDSH 212

5000 Forbes Avenue

Pittsburgh, PA 15232

Act now! The faster you get on the polytope the more
money you can accrue!

References

Aggarwal, C., Hinneburg, A., and Keim, D. On the
surprising behavior of distance metrics in high di-
mensional space. Database Theory–ICDT 2001, pp.
420–434, 2001.

Banach, Stefan and Tarski, Alfred. Sur la decomposi-
tion des ensembles de points en parties respective-

2Not affiliated with Carnegie Mellon University

ment congruentes. Fundamenta Mathematicae, (6):
244–277, 1924.

Bishop, Christopher M. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer, 1st ed. 2006. corr. 2nd printing edition,
2007.

Fouhey, David F. and Maturana, Daniel. The kar-
dashian kernel. In SIGBOVIK, 2012.

Hilbert, David. Keine mehr Schulden, enorme
Gewinne aus der algebraischen Geometrie. Beitrge
zur Algebra und Geometrie, 35(3), 1920.

Maturana, Daniel and Fouhey, David F. Find a sep-
arating hyperplane with this one weird kernel trick.
In SIGBOVIK, 2013.

Ponzi, Charles. A new cool way to make money that
I tried and some results. Please send me books, this
prison library is boring. Epistulae Mathematicae, 13
(20):112–123, 1920.

Zariksi, Oscar. Holomorphic get rich quick schemes.
Ann. of Math., 23(6), 1950.

	�

Fouhey, Maturana: On n-Dimensional Polytope Schemes

	�

DUI: A Fast Probabilistic Paper Evaluation Tool

Ivan Ruchkin
Institute for Hardware Research

Carnegie Mellon University
iruchkin@cs.cmu.edu

Ashwini Rao
Institute for Hardware Research

Carnegie Mellon University
arao@cmu.edu

Abstract

Do not drink and write papers. If you have to, use DUI.

1 Introducktion

Life is hard.
Writing papers is harder.
Getting them accepted is the
hardest.

Your Inner Self

Since time immemorial people have been doing abysmal research and writing
terrible papers. The ancient civilization of Egypt bankrupted because their sages
wrote too many poor papers on too expensive papyrus. The Byzantine Empire
fell after the crusaders brought their counterproductive research tradition to the
Mediterranean. Finally, the Holy Roman Empire declined after the Inquisition
failed to chase all the heresy, which mostly manifested itself as not citing the
Pope. The challenge of writing papers stood the test of time until now.

At the expense of possibly writing another horrible paper, we try to improve
the situation. Our Dump Ur Ideas (DUI) LATEXplugin provides handy paper-
writing support, along with more traditional spellchecking. In the following
sections we explain why exactly you should dump your ideas, as well as your
advisor, research topic, and girlfriend.

	�

2 Belated Work

The last three years saw notable research on optical flow optimization, but
unfortunately it fails to address the issues in writing papers.

3 Motivation, or Lack Thereof

Giving up on life is good.
Avoiding paper-writing is gooder.
Consulting the advisor is the best.
Using DUI is the bestest.

Adwiser

What can possibly go wrong with a paper? It’s all straightforward and easy
– that’s what a typical first-semester PhD student thinks. As it turns out in
the second semester, papers may be not accepted for various reasons. But not
only inexperienced students suffer from the ever-present plague of poor writing:
even the Turing award winners are known to constantly complain about their
paper rejections at small workshops.

Drawing on their vast experience of failed submissions, the authors identified
two major groups of paper issues:

• Bad research ideas per se

• Bad presentation of ideas

We created a LATEXplugin DUI to deal with both of these automagically1,
relying on open big data repositories: Google Scholar, Citeseer, and others. The
plugin runs every time a user compiles a paper and reports unsatisfactory ideas
and writing along with compilation errors and warnings (see Figure 1).

The features of DUI correspond to those two groups of issues.

4 DUI Features: Detecting Bad Ideas

Even though the AI technology cannot come up with good ideas just yet, it
helps us identify bad ideas and notify paper authors.
Useless research. It is among few things considered abnormal yet widespread.
Useless research is so well-known that only few saw actually useful research.
Many contributions are nothing else but solutions in search of a problem [1].
Problems that matter spawn more or less useful papers, which in turn produce
metapapers, and megapapers [2], and eventually their value converges to zero.
To evaluate whether a paper is useful, the tool posts in social networks and
calculates the usefulness based on the likes it gets. By asking Yoda this result
validated is.

1We applied the standard techniques of hypervised learning.

	�

Figure 1: The output summary of DUI.

Research unlikely to succeed. Researchers have tried some ideas many
times, but nobody succeeded. The more an idea is mentioned in future work
sections for a long period of time, the less promising this idea. We scrable the
repositories of existing papers, extract such ideas from future work sections, and
compare those to the ones in the paper under analysis.
Political and ethical controversy. Controversial papers are rarely favorably
accepted. Let’s say you found some evidence that married people are cool. But
is it publishable? Hardly so2: too many would disagree. DUI compares the
word categories in your paper to the popular websites on politics and society
(e.g.,Intentious, Fox News, or National Enquirer) and calculates the correlation.

5 DUI Features: Improving Paper Presentation

You may have the best research in the universe and beyond, but fail to commu-
nicate it properly and get your paper rejected.
Failure to cite reviewers’ papers. Reviewers are egocentric3, and they want
to see their work cited all over the place. It doesn’t really matter if the citation
is appropriate – just put it there. Our algorithm determines reviewers by the
publication venue and cites their work with the highest citation count. This
places your paper in the pool with other accepted papers, because this is what
a citation count basically is. And we all believe in karma.
Criticising reviewers’ work. DON’T! The plugin weeds through your related
work section, does sentiment analysis, and labels each paragraph with one of
these attitudes: arrogant bashing, irrelevant complaint, modest praise, excited
whining, and servile flattery. Then it suggests moving citations of the reviewers’
papers to the more positive paragraphs. For an example of the output, see
Figure 2.

2Moses is handsome.
3Vishal says it’s ok.

	�

Figure 2: A DUI suggestion: changing criticism to a more acceptable reaction.

Not including trending words. These days you’re looking for words like
cloud, empirical, adaptive, big data, or agile. Otherwise the reviewers may deem
your research not relevant or timely. The plugin analyses the word frequency
of the paper and compares it to the conference website and trending words on
popular geek blogs like Engadget.
Ignoring threats to validity. Regardless of your research problem, method,
and validation type, you need a threats to validity section. This section is
basically doing your average reviewer’s for them: now they know all the weak-
nesses, but they don’t actually count. Our tool automatically creates a threats
to validity section and populates it with a description of random biases.
Insufficiently intimidating the readers. If your text is too simple and
understandable, it may not make a good impression on the reviewers. Our
tool uses a patented GRE Suggestions R© technology to suggest replacements.
For example, use the eloquent “Where there are visible vapors having their
provenance in ignited carbonaceous materials, there is conflagration” instead of
the dull and clichéd “Where there is smoke, there is fire”! For more examples
of DUI’s awesome capabilities, see [3].

6 Validation

We did one unstructured interview and one usability test, and consider this
more than sufficient evidence that our plugin is useful.
Structured Interview. We telephoned Dr. Harry Q. Bovik in the middle of
the night, on someday that we do not recall, and asked him about his opinion of
our DUI tool. As you may be aware, Dr. Bovik is a world renowned scientist at
Carnegie Mellon University. This was his reaction: “DUI tool is the best thing
since sliced bread! God bless you! God bless America!”
Controlled Experiment. We conducted an experiment with two groups of
practicing researchers: one received a working prototype of DUI, and the other

	�

got a placebo tool that did not generate useful suggestions4. The post-study
survey results are shown in Figure 3 . The authors consider this figure self-
descriptive, and are planning to contact UPMC to check the placebo group for
insanity.

Figure 3: The survey results. Left: the DUI users. Right: the placebo group.

7 Conclusion and Future Work

Addressing the pain points of the paper-writing process, DUI provides excellent
support for writing stellar papers. It addresses both the issues of poorly chosen
research and poor presentation. As shown by our extensive unbiased validation,
our tool helps improve the quality of papers and cut the time expenses on
writing. This tool, if nothing else, convinces its user to dump most of their
research ideas.

We envision several future directions for our research. One can apply DUI
to texts of other nature, like Facebook posts and online dating profiles. This
appears to be challenging, since the only known person who used LATEXfor
editing dating profiles is Dr. Harry Q. Bovik. But then, his profiles are already
flawless, at least from the mathematical perspective.

Another direction is building a PhD student evaluation tool that would tell
how good a PhD student the input person is. Important metrics would probably
include an ability to sleep till noon, body weight, and procrastination skills. A
significant barrier in this work is making the tool not consume the input.

4We cannot state, however, that the placebo did not have any secondary effects

	�

As an attentive reader may have noticed, this paper is not following some of
the guidelines built into DUI. This is because the authors are so good at writing
papers that even those bloopers cannot hurt them much5.

References

[1] A.R. Solutions in search of a problem.
http://economist.com/blogs/babbage/2012/12/crowdsourcing-ideas, 2012.

[2] D. Gašević, N. Kaviani, and M. Hatala. On metamodeling in megamodels. In
Proceedings of the 10th international conference on Model Driven Engineer-
ing Languages and Systems, MODELS’07, pages 91–105, Berlin, Heidelberg,
2007. Springer-Verlag.

[3] A. U. G. Victim. Difference between a gre person and a normal person.
http://www.hecr.tifr.res.in/ bsn/GOOD/gre-normal.txt, 2013.

5We didn’t have much time for any other conclusions, sorry.

	�

		

	

�

Track 6

Time Travel, Space Travel, and Other Fun Games
for Children

1. A Proposal for Overhead-Free Dependency Management with Temporally Dis-
tributed Virtualization
Peter chapman, Deby Katz, and Stefan Muller
Keywords: virtual time machine, time machine, virtualization

2. The n-People k-Bikes Problem
Lancer Ångström
Keywords: bikes, bixe, biologically-impelled konveyance, motion planning, contiguous allocation algorithms

3. The Problem of Heads of a Fighting Force from Long Ago
Leslie Lamport, Robert Shostak, and Marshall Pease
Keywords: groups of brains of computers, talking in groups, accepting faults, friends agreeing with themselves,
people who go to space, agreeing-group for computer making, ten hundred most used words, sorry to the
people who wrote this paper the first time

4. duoludo: a game whose purpose is games
David Renshaw
Keywords: game, games, gameses

5. The First Level of Super Mario Bros. is Easy with Lexicographic Orderings and
Time Travel . . . after that it gets a little tricky.

Dr. Tom Murphy VII Ph.D.*
Keywords: computational super mario brothers, memory inspection, lexicographic induction, networked enter-
tainment systems, pit-jumping

�

A Proposal for Overhead-Free Dependency
Management with Temporally Distributed Virtualization

Peter Chapman Deby Katz Stefan Muller

Carnegie Mellon University

peter@cmu.edu dskatz@cs.cmu.edu smuller@cs.cmu.edu

Abstract
Because implementation of usable software is a low pri-

ority for graduate students and graduate students are no-

toriously poor software engineers, much of the code pro-

duced by graduate students is difficult to maintain due to the

high number of dependencies accumulated at many different

points in the distant past. This paper proposes a new system

for executing such code by using virtual machines executing

in the past to collect dependencies which are required but no

longer available. Performance of this code can be improved

by using the almost unlimited amount of computing power

that will become available in the future.

1. Introduction
Many first-year graduate students begin their studies by ac-

quainting themselves with the code for past and ongoing

projects of their group. This acquaintance often dominates

the first several years of a PhD program. [6] In many cases,

much of the codebase has been written by former students

years ago who have since graduated. As a result, the pro-

grams can have very specific dependencies reflecting the

trends and stable software of the time period. Such anti-

quated dependencies include GCC 2.5.3, Slackware Linux

1.0.0 and other software and packages that are no longer

widely available and certainly not maintained. Further dif-

ficulties arise when the prior graduate students, themselves,

have constructed their code based on even earlier projects

that were outdated at that time.

Extending the existing code to accomplish novel research

is not feasible, although it is frequently attempted. Further, a

rewrite would require a large time commitment. Finding the

required dependencies just to run the existing code is another

time-consuming and unproductive task. A common solution

is to run the code inside a virtual machine whose image was

built when the dependencies were more widely available.

However, this requires foresight on the part of students writ-

ing the original code. Such foresight is rare, as grad students

rarely have any idea which, if any, of their projects will be

used by anyone, ever. Building the virtual machine in the

present would require finding the dependencies anew.

In this paper, we propose a solution for managing de-

pendencies in legacy code by using a Virtual Time Machine
(VTM) to execute such code at the exact moment in the past

at which all of its dependencies would have been readily

available. While the performance overhead of this technique

is unknown, such overhead is of no consequence. The VTM

executing the application code itself will have been executed

in a VTM running sufficiently far in the future that any over-

head will have been negated by the additional processing

power that will have become available. This proposal will

be implemented when possible has been implemented and a

discussion of results will be published at that time appears

in Section 3.

2. Future Work1

As this work has the potential to positively impact countless

graduate students, we are confident that we, or our succes-

sors, will have implemented the following. We see no need

to create a virtual machine in which our code can be run,

as we are confident that our successors will have used the

VTM to complete the implementation of the VTM. Anecdo-

tally, we discovered our first executable VTM sitting in our

home directory shortly after conceiving the idea over a lunch

meeting. Because of this, we cannot currently report on the

mechanisms that are used to implement the VTM. However,

we report on related work in temporally distributed comput-

ing, which will likely have influenced our implementation,

in Section 4.

2.1 Motivating Example
The following is a running example that we will have fol-

lowed throughout the paper. In year n, a group of mostly

graduate students used a commodity simulator, Cement, to

implement a simulation and run experiments. At that time in

year n, Cement supported simulating the running of an op-

erating system and software that was common in year n− 2.

That version of Cement can only be compiled with a ver-

1 While this section is marked as Future Work, we note that all work

described in this section has already been done, as when the technology to

implement our proposal becomes available, we will do so and will compile a

technical report in a VTM running at a point in time before this conference.

2013/3/17

�

sion of a compiler popular in year n− 1, and it fails to build

if it manages to find any traces of the hit viral video that

will have swept the grad student community in year n + 2.

Furthermore, for a reason no one remembers ever knew, the

entire setup only works in a version of Linux released in

year n − 4. In year n + 1, the version of Linux will reach

the end of its life cycle, after a long, agonizing, and bravely-

fought illness. In year n + 2, the principal architect of the

code base will graduate and leave computer science to pur-

sue his dream of living as a nomad in a yurt in Mongolia. In

year n+ 3, everyone will have moved on and will no longer

be maintaining this code. And in year n+4, a brave group of

graduate students, unfamiliar with the original setup, will try

to use it to run a new experiment, requiring an understanding

of dependencies spanning seven years.

2.2 Operation of the Virtual Time Machine
With the VTM, the graduate students in year n+4 will have

been able to reconstruct all of the dependencies contained

in the code. The Virtual Time Machine, in its initialization

phase, will be collecting the code and software dependencies

pertaining to the relevant software. Operating at a time point

in the future on arbitrarily fast hardware (or on arbitrarily

slow hardware for a very long non-present time period), the

present perceived overhead and run time of the VTM is neg-

ligible. The arbitrarily fast VTM will be spawning multiple

nested VTMs–operating in the past–to recursively determine

the necessary software environment. If need be, the nested

VTMs will have been using their ability to move among past

time periods to locate the software dependencies. Once de-

pendencies have been and will be located, the VTM next will

have been visiting the time periods during which expert dis-

tributions and installations of that software could have been

obtained. These time periods may or may not have corre-

sponded to the years n − 4 through n in the motivating ex-

ample. Once the proper software will have been installed, the

VTM will have returned to the present, to resume interaction

with the programmer.

3. Discussion
As noted in the Introduction, all overhead associated with

the running of a VTM can be negated by executing that

VTM in the future. Exactly how far into the future this VTM

needs to be located can be easily approximated based on

Moore’s Law [4], which will always continue to hold true

in the future. [5]

One necessary side effect of operating the VTM in the

future will be that people must continue to run the hardware

for the VTMs initiated in the present. Although the possibil-

ity for using a VTM to gain funds by, for example, winning

the lottery or betting on stocks, has been rejected, some be-

lieve the value of the research efficiencies will be more than

enough to fund hardware maintenance.

Despite the many opportunities they promise, we note

that VTMs have some theoretical limitations. For example,

VTMs cannot execute infinitely far into the future. Such

a VTM could easily solve the halting problem by simply

waiting for the program to terminate. It continues to be an

open question in the nascent field of VTM research how to

use this technology to reason about open complexity theory

problems.

In addition, more study must be done, and probably al-

ready has, to determine whether this work allows for the

possibility of computational time paradoxes, such as creat-

ing an application that has itself as a dependency, or pre-

venting your parents from meeting that time in 1980 when

they bonded over shared complaints about non compiling

FORTRAN code. Such paradoxes would be concerning, but

would not greatly impact the use of VTMs by careful pro-

grammers. Reports of such complications created by the use

of VTMs will be carefully monitored and published as future

work. [3]

4. Related Work
While this work represents a novel use of temporally dis-

tributed computing protocols, previous and ongoing work

has, we suspect, leveraged time travel. We will almost cer-

tainly be indebted to this work for technical details of the

construction of the VTM system. Google, having run out of

techniques to increase the performance of its web browser,

Chrome[1], has recently resorted to temporally distributed

computing in a plugin that reduces load times by prefetch-

ing remote resources before the user has expressed interest in

navigating to them, opened Chrome, or even turned on his or

her computer. Previously, the latest version of the X Window

System, X11[2], used temporal distribution to send network

messages several minutes into the future. Or, at least, this is

the only explanation the authors have as to how slow X11 is.

5. Conclusion
In summary, we have presented a method to support the

ongoing research based on legacy codebases using a Virtual

Time Machine. VTMs have the potential to improve the

graduate student morale and productivity, and reduce project

cost.

References
[1] Chrome browser, Mar. 2013. URL http://www.google.

com/chrome.

[2] X.org foundation, Mar. 2013. URL http://www.x.org/

wiki/.

[3] P. Chapman, D. Katz, and S. Muller. Hilarious consequences

of temporally distributed computing. In Proceedings of the 8th

Conference of the ACH Special Interest Group on Harry Q.

Bovik, Pittsburgh, PA, USA, 2014.

[4] G. E. Moore. Cramming more components onto integrated

circuits. Electronics Magazine, 38(8), 1965.

2013/3/17

�

[5] G. E. Moore, VI. Cramming more components onto integrated

circuits totally worked. Electronics Magazine, 238(3), 2165.

[6] S. Seshan. In Leaked Proceedings of the CSD Black Friday

Meetings, Pittsburgh, PA, USA, 2012. CMU Computer Science

Department.

2013/3/17

�

SIGBOVIK 2013 Paper Review
Paper 4: A Proposal for Overhead-Free
Dependency Management with Temporally
Distributed Virtualization

Ben Blum, Light Cone Sedentarian
Rating: REDACTED DUE TO CAUSALITY VIOLATION
Confidence: 2/4

The authors seem to be uncertain about a the work’s implications to complexity theory (and don’t

even mention the obvious application to perplexity theory). This reviewer wonders why, if the

authors have access to time travel, the paper was not more polished before submission (“before”,

of course, referring to the paper’s causal reference frame rather than the reviewer’s).

A number of important citations are missing. Developing an Algorithm for “Enhance” Func-
tionality in Image Processing in SIGBOVIK 2010 first pioneered the technique of Chronological

Peregrination, and Causality 2.0: Now with Eventual Consistency (by the Big Man Bovik himself)

in SIGBOVIK 2035 will have generalized the technique to arbitrary computation.

However in my estimation the major weakness of this paper is that, by its very nature, the work

cannot possibly be novel. The authors must resolve this paradox before the work can be considered

complete.

�

The n-People k-Bikes Problem
Lancer Ångström, Dept. for Biologically-Impelled Konveyance and Excursion Research Studies

W
e present and solve the n-People k-Bikes
Problem. This problem concerns a group of
n people who possess among them k bikes,

with k < n, and wish to travel to a destination d in a
way that minimizes the time it takes the last member
among them to arrive. We show that n people can,
indeed, use k bikes to accelerate their travel beyond
walking speed, and give an algorithm for planning
bicycle allocation for general n and k.

The n-People k-Bikes Problem has far-reaching
implications in many fields, including comestibility
theory [3], deep-space navigation [2], maximum-jerk
motion planning [4], and pop-math brainteasers.

1. Introduction

Y
ou’re hungry. Your n − 1 friends, some of
whom are cyclists, are also hungry. Collec-
tively, you decide to venture out from the

comfort of your respective offices on campus, through
the perilously cold (and often wet) outdoors of the
Pittsburgh winter, to your favorite dining establish-
ment d.1 During the journey, however, the advanc-
ing hunger and tormenting weather overcome your
group’s desire to amble idly at the leisurely walking
speed of w. You glance over at your cyclist friends,
who are pushing along their k bikes beside them-
selves, and wonder: “Might there be a way to exploit
the bikes so that all n of us can get to d sooner?”

Such is the n-People k-Bikes Problem.

2. Problem Statement

The precise formulation and constraints of the prob-
lem are as follows.

1We have only experimentally verified our research in the
specific case of d = Chipotle, though we expect the results
to generalize to all d.

Figure 1: Not like this.

G
iven n people and k bikes, n < k, all colocated,
where:

1. each person can travel on foot, at walking speed
w, or bike at speed b, with w < b,

2. mounting and dismounting a bike takes a negli-
gible amount of time ε,

3. at most one person can ride a given bike at a
time (see Figures 1 and 2), and

4. bikes are stationary when not ridden,

show how all n people can arrive at a destination
d in some time t less than that afforded by walking
speed w.2

We now insert a page break so you can figure it
out on your own if you want before moving on.

2So “k people bike the entire distance, and wait while n− k
people walk” is not a solution. That would be a differ-
ent kind of “maximum-jerk” motion planning, which has
already been thoroughly investigated in prior work [1].

�

Figure 2: Stripe-Boy demonstrates correct bicycle alloca-
tion protocol. (Helmets are apparently beyond
the scope of his work.)

3. Solution

T
he key insight to solving the problem is that
bikes can be left unattended for a time, until
a walker catches up to its location. In fact in

any optimal solution every bike must idle at some
point.

To appreciate the method by which n people can
ride k bikes to arrive with average speed greater
than walking speed w, it is best to first consider the
minimum nontrivial instantiation of the problem.

3.1. Specific Case: n, k = 2, 1

F
igure 3 shows the solution for 2 people sharing
1 bike. The frames show progress after 0, 1, 1.5,
2, and 3 units of time have elapsed, assuming

w = 0.5 and b = 1 (i.e., biking is twice as fast as
walking). Note that the bike is idle between times 1
and 2 – for a full third of the transit time! – yet the
stick figures arrive in 3 time units, a 25% improve-
ment over walking speed, and only 50% slower than
both participants having a bike of their own.

Formally we say that the bicycle allocation for this
case is that person 0 (the blue one, if you’re reading
this electronically or printed in color) rides bike 0
for distances between 0 and 1, and person 1 (the red
one, if same) rides it for distances between 1 and 2.
For short, we write:

p0 = b0@0

p1 = b0@1

d=0 d=0.5 d=1 d=1.5 d=2

Figure 3: The solution for n, k = 2, 1.

3.2. Generalized It

W
ithout loss of generality, let us say that d is n
units of distance away (i.e., the same as the
number of people). First, some observations

about the problem:

1. A total of n2 distances will be traveled. A total
of nk distances will be biked. It is pointless for
bikes to go backwards.

2. By symmetry, in an optimal solution, each per-
son will bike k distance and walk n− k distance.
This also means that fractional distances (less
than 1/n of the total distance) need not be con-
sidered as places to mount/dismount.

3. No more than k people can ride for any given
distance unit [i, i + 1]. If any fewer than k
people rode this way, the bikes would be under-
utilised. This allows us to check both validity
and optimality.

4. The optimal (minimum) total travel time is k/b+
(n − k)/w. The optimal (maximum) average
speed is nbw/(kw + bn− bk).

While Figure 3 plots the participants’ positions at
(time,distance) coordinates, for the general instance
of the problem it is more useful to plot transportation
mode (i.e., whether a person walks or rides bike i)
at (person,distance) coordinates. For example, in
Figure 4 we show n× n grids for the 2, 1; 3, 2; and
5, 3 instances of the problem.

�

distance
person 0 1

0 b0
1 b0

(a) 2 people, 1 bike.

distance
person 0 1 2

0 b0 b1
1 b0 b1
2 b1 b0

(b) 3 people, 2 bikes.

distance
person 0 1 2 3 4

0 b0 b1 b2
1 b0 b1 b2
2 b0 b1 b2
3 b2 b0 b1
4 b1 b2 b0

(c) 5 people, 3 bikes.

Figure 4: Bicycle allocation policies for selected instances of the n-People k-Bikes Problem. White cells represent
walking; cells of different colours represent different bikes. Can you spot the French flag?

The pattern is now evident: Person i rides a bike
between distance i and distance i + k mod n. To
express this in the notation from the previous section,
we can say: ∀i, j with 0 ≤ i < n and 0 ≤ j < k:

pi = bj@(i+ j mod n)

We now show that this strategy is both possible
and optimal.

Theorem 1 (Optimality). The n-People k-Bikes
Problem is solved optimally when pi rides between
distance i and distance i+ k mod n.

Proof. By condition (3) above, it suffices to show
that, at each distance unit, exactly k people ride. A
simple induction on k will do nicely.

3.3. Minimizing Mounts/Dismounts

T
he astute reader will note that, while the al-
locations in the above tables successfully min-
imize total travel time, they maximize the

number of times each rider must mount and dis-
mount a bicycle. If we let ε (the time to mount or
dismount) be non-negligible, we see that the travel
time achieved above is actually: k/b+(n−k)/w+2kε.

We might instead attempt to allocate bicycles con-
tiguously, like in Figure 5 below. Here, n − k + 1
riders can ride “monogamously”, though k − 1 peo-
ple will have two riding sessions with a walking in-
termission. This gives us a better travel time of

distance
person 0 1 2 3 4

0 b0 b0 b0
1 b1 b1 b1
2 b2 b2 b2
3 b1 b0 b0
4 b2 b2 b1

Figure 5: Each person mounts/dismounts 2 or 4 times.

k/b+ (n− k)/w + 4ε, which is a strict improvement
whenever k > 2.

Theorem 2 (Contiguous Allocation). For all n and
k, an optimal bicycle allocation exists in which no
rider mounts and dismounts more than four times,
and is given as follows:

pi = b(i mod k)@{i � i+ k} i ≤ n− k

pi =
b(i mod k)@{i � n},

i > n− k
b(i+k−n) @{0 � i+ k − n}

where bx@{y � z} expands to bx@(y), bx@(y + 1),
. . . bx@(z − 1).

Proof. By induction on k.

4. Evaluation

I
n Figure 6 we find our visualizings. The hori-
zontal line on top represents the previous state
of the art, in which some participants walk the

entire distance. The bottom line represents the ideal
case, in which there are enough bikes for everyone
to ride together.
Here we have plotted the travel time for various

values of n, k against different configurations of the
b/w ratio; i.e., how much faster it is to bike than to
walk. We hope this presentation will be useful in
many different terrains; for example, if the destina-
tion is downhill, b/w may be very high indeed.

5. Conclusion

Y
ou and your friends have arrived at d at the
unprecedentedly fast speed of nbw/(kw+bn−
bk), and are warming up indoors and enjoying

dinner. “Wow,” you say, “I sure am glad everyone
thought to make n copies of their bike-lock keys!”

	

Figure 6: Speedup achieved in the n-People k-Bikes Problem. As always, lower is better.

References

[1] F. Anchovie*. Maximum-jerk motion planning. In
Proceedings of the 2st Annual Intercalary Work-
shop about Symposium on Robot Dance Party in
Celebration of Harry Q. Bovik’s 26th birthday,
2008.

[2] N. Beckman. Arkan∞id: Breaking Out of a fi-
nite space. In Proceedings of the 3th Annual
Intercalary Workshop about Symposium on Robot
Dance Party in Celebration of Harry Q. Bovik’s
26th birthday, 2009.

[3] Carlo Angiuli (ed.). Comestibility theory. Track
2 of the 6nd Annual Intercalary Workshop about
Symposium on Robot Dance Party in Celebration
of Harry Q. Bovik’s 26th birthday, 2012.

[4] J. Kua and P. Velagapudi. Optimal jerk tra-
jectories. In Proceedings of the 2rd Annual In-
tercalary Workshop about Symposium on Robot
Dance Party in Celebration of Harry Q. Bovik’s
26th birthday, 2008.

A. Scratch Work

These are some more tables we drew when deciding
whether Theorem 2 was even true at all, and they
were too colorful not to include.

distance
person 0 1 2 3 4 5 6

0 b0 b0 b0
1 b1 b1 b1
2 b2 b2 b2
3 b0 b0 b0
4 b1 b1 b1
5 b1 b2 b2
6 b2 b2 b0

distance
person 0 1 2 3 4 5 6

0 b0 b0 b0 b0 b0
1 b1 b1 b1 b1 b1
2 b2 b2 b2 b2 b2
3 b1 b3 b3 b3 b3
4 b2 b2 b4 b4 b4
5 b3 b3 b3 b0 b0
6 b4 b4 b4 b4 b1

Figure 7: To those who printed in black-and-white and
find these illegible, we say: stop reinforcing
the color binary!

SIGBOVIK 2013 Paper Review
Paper 13: The n-People k-Bikes Problem

James McCann, TCHOW
Rating: A+++++++ strong work, would read again
Confidence: ∞/4, even though I only skimmed the second half of the paper

Finally, a practical result in computer science.

Irate Driver, The Road
Rating: Requires Revision
Confidence: 4/4

Look, I’m not a terrible person, I’m fine sharing the road with y’all cyclists. Sure, you sometimes

move slower than traffic, but mostly you keep pace, and I don’t mind it. (Though it can get a bit

scary when you blend in with the surroundings – I really don’t want to hit you folks.)

But leaving your bike just sitting in the middle of the street and continuing on foot? Seriously?

I mean, in the last week alone I’ve had to carefully drive around at least six bikes just sitting in

the middle of the street between CMU campus and d = Chipotle. At first, I suspected this was

a sign of the rapture, with the virtuous cyclists being taken off while slovenly drivers were left to

experience the tumultuous end times. And then I found a preprint of this paper near one of the

seemingly abandoned bikes.

Please, for the love of order in chaos, for the light of reason in the darkness of ignorance, for the

sake of my commute: include a notice that leaving your bike in the street is NON-OPTIMAL.

Cyclolector, The Cycle-Cave
Rating: Resigned Acceptance
Confidence: 4/4

The correct solution is clearly n− k more bikes.

���

The Problem of Heads of a Fighting Force from Long Ago
LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI In Many Lands

Sometimes, in a group of computers, there will be a broken part that will tell confusing facts to the rest of the computers in the

group. If we want to be able to trust the entire group, it must be able to ignore these confusing facts when deciding what to

do. We can talk about this situation by playing make-believe about the heads of a fighting force from long ago, who are waiting

with their people around a bad-guy city. The people must agree upon a shared fighting plan, but can only talk to each other

by sending a person who carries a letter with orders written on it. However, one or more of the heads may be bad guys who

will try to confuse the others. The problem is to find a way for the good guys to talk to each other, without knowing who the

bad guys are, to make sure they can agree on what to do anyway. We will show that, if the good guys use only word-of-mouth,

this problem is possible if and only if more than two-thirds of the heads are good guys. This means that a single bad guy could

confuse two good guys. If the good guys use signed written letters, which means a bad guy couldn’t pretend their letter came

from someone else, the problem is possible for any number of heads and possible bad guys.

Words About What This Paper is About: C.2.4. [Computer-Talking Groups]: Groups of many computers—groups of brains
of computers; D.4.4 [Computer Brains]: Managing Talking—talking in groups; D.4.5 [Computer Brains]: Being Trusted—
accepting faults

Big Picture Words: Plans, Being Trusted

More Key Words and Groups of Words: Friends agreeing with themselves

1. OPENING WORDS

If you have a group of computers that you want to be able to trust, it must be able to live even if
one of its parts breaks. A broken part may act in a way that people often don’t think about – that
is, sending confusing facts to different parts of the computer-group. We will talk about this kind of
breaking-problem, using make-believe, as the Problem of Heads of a Fighting Force from Long Ago.

We imagine that several parts of the fighting force from long ago are waiting outside a bad-guy city,
each group controlled by its own head person. The heads can talk with one another only by sending
a person who carries a letter with the orders written on it. After watching the bad guys, they must
decide upon a shared plan of attack. However, some of the heads may be bad guys, trying to stop the
good guys heads from agreeing. The heads must have an plan to make sure that:

A. All good guys decide upon the same plan of how to act.

This work was helped in part by the People Who Go To Space under plan NAS1-15428 Change 3, the Group for Being Safe
Against Flying Fire Guns under plan DASG60-78-C-0046, and the Fighting Force Work Office under plan DAAG29-79-C-0102.
Where the people who wrote this live: Computer Study Work Place, SRI In Many Parts of the World, 333 Flying Animal’s Wood
Street, Park with a Person’s Name, CA 94025.
You are allowed to take all or part of this paper without paying as long as the you don’t make or give papers for making money,
and the notice that Agreeing-group for Computer Making owns this paper, and the name of the paper and its date appear, and
you give notice that if anyone takes it, it’s because the Agreeing-group for Computer Making allowed them. If you want to take
this paper in another way, or to put it in a book or on computers where people can see it, you need to pay and/or to ask us to let
you.
c©1982 ACM 0164-0925/82/0700-0382 $00.75

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

The Problem of Heads of a Fighting Force from Long Ago • 383

The good guy heads will all do what the plan says they should, but the bad guy heads may do
anything they wish. The plan must make sure that situation A happens no matter what the bad guys
do.

The good guys should not only agree, but should agree upon a plan that makes sense. So, we also
want to make sure that

B. A small number of bad guy heads can’t cause the good guy heads to take a bad plan.

It is hard to make clear what we mean in Situation B, since it needs you to say exactly what a bad
plan is or isn’t, and we do not attempt to do so. Instead, we consider how the heads reach a way to agree.
Each head watches the bad-guy city and tells what he or she sees to the others. Let fact(i) be the facts
told by the head with number i. Each head uses some way to put together the facts fact(1) . . . fact(n)
into a single plan of what to do, where n is the number of heads. We can make Situation A happen
by having all heads use the same way for putting together the facts, and make Situation B happen
by using a way that can be trusted. Think about this case: if the only thing to agree on is whether to
attack or run away, then fact(i) can be Head i’s thought of which way is best, and the real plan can
come from which way has more heads that want to do it. A small number of bad guys can change the
way only if there were almost the same number of good guys who wanted to do each way, in which case
not either way could be called bad.

While this approach may not be the only way to make situations A and B happen, it is the only one
we know of. It needs a way for the heads to tell their facts fact(i) to one another. The most clear way
is for the head number i to send fact(i) by a person who carries a letter to each other head. However,
this does not work, because making situation A happen needs every good guy head to read the same
facts fact(1) . . . fact(n), and a bad guy head may send different facts to different heads. For situation A
to happen, the following must be true:

1. Every good guy head must hear the same facts fact(1) . . . fact(n).

Situation 1 means that a head can’t in all cases use a fact of fact(i) read straight from the head
number i, since a bad guy head number i may send different facts to different heads. This means that
without care, in meeting situation 1 we might make it possible for the heads to use a fact for fact(i)
different from the one sent by head number i–even though that head is good. We must not allow this
to happen if situation B is to be met. Think about this case: we can’t allow a few bad guys to cause the
good guys to act as if the facts were “run away” , . . . , “run away” if every good guy said “attack”. So, we
need the following thing for each i:

2. If head number i is good, then the fact that he or she sends must be used by every good guy head as
the fact for fact(i).

We can say situation 1 another way by saying that for every i (whether or not the head number i is
a good guy),

1’. Any two good guy heads use the same meaning of fact(i).

Situations 1’ and 2 both use just the single fact that was sent by head number i. Because of this,
we can think about the smaller problem of how a single head sends their fact to the others. We’ll talk
about this by talking about a controlling head sending a letter to her friends, causing the following

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

384 • L. Lamport, R. Shostak, and M. Pease

problem.

The Problem of Heads of a Fighting Force from Long Ago. A controlling head must send an order to
her n-1 friends such that
FA1. All good-guy friends listen to the same order.
FA2. If the controlling head is a good guy, then every good guy friend listens to the order she sends.

These situations, FA1 and FA2, are called the friends agreeing situations. Note that if the controlling
head is a good guy, then FA1 follows from FA2. However, the controlling head need not be good.

To fix our first problem, head number i sends their fact of fact(i) by using an answer to the Fighting
Force Heads Problem to send the order “use fact(i) as my fact”, with the other heads acting as the
helping friends.

2. SHOWING WHAT ISN’T POSSIBLE

The Problem of Heads of a Fighting Force from Long Ago seems simple, but it is actually not. It is hard
because of the surprising fact that if the heads can send only talk to each other out loud, then any plan
can only work if more than two-thirds of the heads are good guys. Now, when we say “talking out loud”,
we mean that the words are completely under the control of the person saying them, so a bad guy could
say anything he or she wanted to, even “Your good-guy friend said to do such-and-such!” This sort of
speaking is the same as how computers usually speak to one another. In Part 4, we consider signed,
written letters, for which this is not true.

We now show that with spoken words, no plan for three people can handle a single bad guy. To keep
things simple, we consider the case in which the only things to do are “attack” or “run away”. Let us
first think about the situation pictured in Figure 1 in which the controlling head is a good guy, and
sends an “attack” order, but the second friend is a bad guy and tells the first friend that he heard a
“run away” order. For FA2 to happen, the first friend must listen to the order to attack.

Now consider another situation, shown in Figure 2, in which the controlling head is actually a bad
guy, and sends an “attack” order to the first friend and a “run away” order to the second friend. The
first friend does not know who the bad guy is, and she can’t tell what the controlling head actually said
to the second head. So, the situations in these two pictures appear exactly the same to the first friend.
If the bad guy lies all the time, then there is no way for the first friend to know which situation is
happening, so she must listen to the “attack” order in both of them. So, any time the first friend hears
an “attack” order from the controlling head, she must listen to it.

However, in the same way we could show that if the second friend hears a “run away” order from the
controlling head then he must listen to it even if the first friend tells him that the head said “attack”.
Because of this, in Figure 2, the second friend must listen to the “run away” order while the first friend
listens to the “attack” order, which means situation FA1 doesn’t happen. So, there is no way for three
people to agree if one of them is a bad guy.

This way of thinking about it may appear right, but you should think hard before believing such
hand-waving reasoning. Although what we said is right after all, we have seen other “ways of thinking
about it” that are totally wrong. We know of no area in the study of computers or the study of numbers
in which hand-waving reasoning could more easily lead to wrong answers than in the study of this type
of problem. For a stronger way of thinking about why this isn’t possible, you should read [3]. Using
this answer, we can show that no plan can work for a given number of heads if one third of them are
bad guys.

You might think that it’s so hard to fix the Fighting Force Heads Problem because the heads need
to agree with each other completely. Actually, this is not the case, and only-sort-of agreeing with each
ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

The Problem of Heads of a Fighting Force from Long Ago • 385

Fig. 1. The second friend is a bad guy.

Fig. 2. The controlling head is a bad guy.

other is just as hard. Suppose that instead of trying to agree on a complete plan to attack, the heads
must agree only upon a set of times, during which the attack should happen. We will say the control-
ling head needs to order the time of the attack, and the following two situations need to happen:

FA1’. All good guys attack within 10 minutes of one another.
FA2’. If the controlling head is a good guy, then every other good guy attacks within 10 minutes of the
time given in the controlling head’s order.

(We are supposing that the orders are given and thought about the day before the attack and that
the time at which an order is heard doesn’t matter–only the attack time given in the order matters.)

Like the Problem of Heads of a Fighting Force from Long Ago, there is no answer to this problem
except when more than two-thirds of the heads are good guys. We make sure this is true by first
showing that if there were an answer for three people that were okay with one bad guy, then we could
answer the first problem, which we already showed was not possible. Suppose the controlling head
wishes to send an “attack” or “run away” order. We’ll say that she can show she wants to attack by

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

386 • L. Lamport, R. Shostak, and M. Pease

ordering an attack time of 1:00, or he could show he wants to run away by ordering an attack time of
2:00. Each of her friends, that is, the other heads, will listen to her order in the following way.

(1) After hearing the attack time, a head does one of the following:
(a) If the time is 1:10 or earlier, then attack.
(b) If the time is 1:50 or later, then run away.
(c) Or else, continue to step (2).

(2) Ask the other not-controlling head what they did in step (1).
(a) If they did either of the first two things, then do the same thing they did.
(b) Or else, run away.

It follows from FA2’ that if the controlling head is a good guy, then her good guy friends will hear the
right order in step (1), so situation FA2 happens. Also, FA1 follows from FA2, so we only need to make
sure of FA1 when we suppose the controlling head is a bad guy. Since there is at most one bad guy, this
means that both of her friends are good guys. It follows from FA1’ that if one friend decides to attack
in step (1), then the other can’t decide to run away in step (1). So, either they will both do the same
thing in step (1) or at least one of them will wait until step (2). In this case, it is easy to see that they
both decide to do the same thing, so FA1 happens. This means we just built a three-person answer for
the first problem, which is not possible. So, we can’t have a plan for three people that makes FA1’ and
FA2’ happen if one of them is a bad guy.

Notice how we had one of the heads pretend to be m other heads at the same time. We can now do
that again to make sure that no answer with three times m (or fewer) people can ever be okay with m
bad guys. The way of making sure that’s true is like the one for the first problem, and is left for the
person reading this paper to do on their own.

3. AN ANSWER FOR WHEN THE HEADS USE SPOKEN WORDS

We showed above that for an answer to the Problem of Heads of a Fighting Force from Long Ago using
spoken words to be okay with with m bad guys, there must be more than three times m heads in total.
We will now give an answer that works for more than three times m heads. However, we first want to
make clear exactly what we mean by “spoken words”. Each head is supposed to follow some plan that
tells them to send some facts to the other heads, and we suppose that a good guy will actually follow
the plan. When we say “spoken words”, we mean that we’re supposing the following things about the
way the heads talk to each other:

A1. Every word that is said can be heard by the person who is meant to hear it.
A2. Any person who hears something knows who said it.
A3. If someone tried to say something, but their words went missing, you can know that that happened.

By supposing A1 and A2, we make sure a bad guy can’t cause two other people to not be able to talk
each other or to think they said things that they didn’t. By supposing A3, we make sure a bad guy can’t
make people not be able to decide something by not saying anything at all.

The answers that we give in this part of the paper and in the following one only work if each head
is able to speak to each other head without needing anyone in between to help. We would talk about
answers which do not need this to happen, but we are leaving that part out of our paper so the paper
does not get too long.

A bad-guy controlling-head may decide not to send any order. Since the other heads must decide to
follow some order, they need something to do if no-one tells them to do anything. We’ll say RUN AWAY
will be this order.
ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

The Problem of Heads of a Fighting Force from Long Ago • 387

We will show how to run a Spoken Words plan by which a controlling-head sends an order to the rest
of the heads. We’ll talk about this plan by a way of supposing that, as long as the plan works for some
number of heads, it can also work for one more than that many heads. So if we can show that, then we
know it works for all possible numbers of heads.

We show that the Spoken Words plan, with some number m, is an answer to the Problem of Heads
of a Fighting Force from Long Ago for more than three times m many heads, as long as there are m or
fewer bad guys.

The Spoken Words plan where m is nothing at all (which means there are no bad guys):

(1) The controlling head says what she decided to do to every other head.
(2) Each other head does the thing they heard the controlling head say, or does RUN AWAY if they

didn’t hear anything.

The Spoken Words plan where m is one more than some other number j:

(1) The controlling head says what she decided to do to every other head.
(2) For each number i, let facti be the fact that head number i heard from the controlling head, or else

be RUN AWAY if they hear nothing. Head number i acts as the controlling-head in the Spoken
Word plan for one fewer than m, to say facti to the other heads.

(3) For each number i, and each number j not the same as i, let factj be the fact that head number i
heard from head number j in step (2) (using the Spoken Word plan for one fewer than m), or else
RUN AWAY if they heard nothing. Head number i will do the thing that they heard most often,
from all the factj .

To understand how this plan works, we consider the case where m is one and there are four total
heads. Figure 3 shows what the second head hears when the controlling head says some fact f , and the
third head is a bad guy. The third head says some other fact g. In step 3, the second head then heard f
two times and g once, so decides to do the right thing, which is f .

Next, we see what happens if the controlling head is a bad guy. Figure 4 shows what the other heads
hear if the controlling head says whatever she wants, which we’ll say are x, y, and z, because they can
all be different. Each other head hears all three different orders, so they all decide to do the same thing
in step (3), no matter if x, y, and z are the same.

The bigger Spoken Word plan, where there are two or more bad guys, uses the smaller plan many
different times. This means that for more than one bad guy, each head will have to talk to the other
heads many different times. But there has to be a way for each head to tell which facts are which. You
can make sure there is a way to do this by having each head, just before saying some fact facti, also
says the number i, in step (2).

To make sure the Spoken Words plan is right for any number of bad guys, we first make sure the
following expression is true.

EXPRESSION 1. For any numbers m and k, the Spoken Words plan makes situation FA2 happen if
there are more than 2k +m heads and at most k bad guys.

REASON THAT IS TRUE. We can show the reason this is true by thinking about it in a way of sup-
posing it is true for a given number then showing it must also be true for one more than that number.
In this case the number we will pay attention to is m. FA2 only talks about what must happen if the
controlling head is a good guy. First, using A1, it is easy to see that the most simple plan (the Spoken
Words plan for no bad guys at all), so the expression is true for the starting case. We now suppose the
expression is true for one fewer than some number m, and show it is true for m.

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

F
ig

.
3.

Sp
ok

en
W

or
ds

pl
an

,
w

he
re

th
e

th
ir

d
he

ad
is

a
ba

d
gu

y.

F
ig

.
4.

Sp
ok

en
W

or
ds

pl
an

,
w

he
re

th
e

co
nt

ro
lli

ng
he

ad
is

a
ba

d
gu

y.

���

The Problem of Heads of a Fighting Force from Long Ago • 389

In step (1), the good-guy controlling head sends an order to all n− 1 of their friends. In step (2), each
good-guy friend runs the Spoken Words plan for m− 1 bad guys with n− 1 heads. Since we supposed n
is bigger than 2k +m, we know n− 1 is bigger than 2k + (m− 1), so we can use the thing we supposed
to show that every good-guy friend decides to do what the controlling head told them. Since there are
at most k bad guys, and n − 1 is bigger than 2k + (m − 1), which in turn is bigger than two times k,
then more than half of the friend-heads are good guys. So, each good-guy friend decides to do what the
controlling head told them in the third step, which makes sure that FA2 happens.

The following expression says that the Spoken Words plan is a right answer to the Problem of Heads
of a Fighting Force from Long Ago.

EXPRESSION 2. For any number of bad guys, the Spoken Words plan makes sure both Friends-
Agreeing situations happen if there are more than three times as many people as bad guys.

REASON THAT IS TRUE. We show the reason this is true by the same way of supposing as before. If
there are no bad guys, then it is easy to see that the easiest Spoken Words plan makes situations FA1
and FA2 happen. So, we suppose that the expression is true for the Spoken Words plan for m − 1 bad
guys, and show it is true for m bad guys.

We first consider the case in which the controlling head is good. By letting k be the same as m in
Expression 1, we see that the Spoken Words plan for m bad guys makes FA2 happen. FA1 follows
from FA2 if the controlling head is good, so we need only make sure FA1 happens in the case that the
controlling head is a bad guy.

There are at most m bad guys, and the controlling head is one of them, so at most one fewer than m
of their friends are also bad guys. Since there are more than three times m people in total, there are
more than 3m− 1 friends, and one fewer than three times m is bigger than three times one fewer than
m. So we can use the thing we supposed to show that the Spoken Words plan for m−1 bad guys makes
FA1 and FA2 happen. Because of that, any two good-guy friend-heads decide to do the same thing in
the third step of the plan, which makes FA1 happen.

4. A PLAN FOR WHEN BAD GUYS CAN’T PRETEND THEIR WORDS CAME FROM SOMEONE ELSE

As we saw from the situations in Figures 1 and 2, it is the fact that bad guys can lie that makes the
Fighting Force Heads Problem so hard. The problem becomes easier to find an answer for if we can
make sure they don’t lie. One way to do this is to let the heads send signed letters to each other. Using
computers, there are ways to sign your letters where you use some very big numbers that make it very
hard for a bad guy to pretend a signed letter was written by someone else or says something different.
We’ll suppose the heads use this way of signing letters. So, already supposing A1, A2, and A3, we will
also suppose the following:

A4 (a) A bad guy can’t write a signed letter and pretend that a good guy wrote it, and also can’t
change a signed letter that was already written to say something else.

(b) Anyone can make sure that a signed letter came from the person who signed it.

Note that we don’t suppose anything about letters that a bad guy signed. One important thing this
means is that bad guys can write signed letters and pretend they came from other bad guys. So we are
even letting bad guys work together instead of acting alone.

Now that we can write signed letters, the thing we said earlier about needing four or more heads in
order to be okay with one bad guy is no longer true. In fact, there is an answer for three heads now. We
now give an answer where any number of heads are okay with any number of bad guys (though the
problem doesn’t make any sense if there are fewer than two good guys).

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

��	

390 • L. Lamport, R. Shostak, and M. Pease

Usually, when signing a letter, you write your name at the bottom of the letter. But since we are
using computers and very big numbers for this stronger sort of signing, the thing you write after the
letter is numbers, instead of your name. We will call these “signing-numbers”.

In our answer, the controlling head sends a signed order to each of her friends. Each friend then
adds his or her signing-numbers to that order and sends it to the other friends, who add their signing-
numbers to that order and send it to everyone else, and so on. This means that each head must be
given one signed letter and sign it and send it to several other people.

In the following answer, when we say f : i, we mean the fact f signed by head number i. So, f : j : i
means the fact f signed by head j, and then that fact-and-signing-numbers signed again by head i. We
will say Head One is the controlling-head, who gives the orders. In this plan, each head remembers a
set Vi which is made of all (not pretended) signed orders he or she has been given so far. (If Head One
is a good guy, then this set should never have more than one thing in it.)

Do not confuse Vi, the set of orders that a head was given, with the set of words that were said to
them. There may be many different words spoken about the same order.

Spoken Words Plan for m bad guys.

At the start, each Vi is empty.

(1) The controlling head signs and sends her order to every friend head.
(2) For each i:

(a) If head number i is given a letter of the form f : 1 from the controlling head and he has not yet
heard any order, then
i. he lets Vi become just {v};

ii. he sends the signed letter v : 1 : i to every other head.
(b) If head number i gets a letter of the form f : 1 : j1 : . . . : jk and v is not in the set Vi, then

i. he adds v to Vi;
ii. if k is less than m (the number of bad guys), then he sends the letter f : 1 : ji1 : . . . : jk : i to

every head besides the ones with numbers j1 through jk.
(3) For each i: When head number i will get no more letters, he or she decides to follow any order in

the set Vi, or RUN AWAY if the set is empty.

Note that in step (2), the heads ignore any letter that talks about an order already in the set Vi.
Figure 5 shows the Signed Letters plan for the case of three heads when the controlling head is a

bad guy. The controlling head sends an “attack” order to one head and a “run away” order to another.
Both friend-heads get the same two orders in step (2), so after step (2) V2 and V3 are both {“attack”,
“run away”}, and they both decide what to do the same way. Notice that here, which is not like the
situation in Figure 2, the friends know that the controlling head is a bad guy because she signed two
different orders, and A4 states that only she could have made those signing-numbers.

5. CLOSING WORDS

We have presented several answers to the Problem of Heads of a Fighting Force from Long Ago, in
several different situations. The plans in these answers can take a lot of time to run and can also need
a lot of letters to be sent. Both the Spoken Words plan and the Signed Letters plan might need each
order to be sent more than m times, where m is the number of bad guys.

In other words, each head may have to wait for orders that came from the controlling head and were
then passed on by m other heads. Other people who study computers have shown that this must be
true for any answer that can be okay with with m bad guys, so our answers are as good as possible.
ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

��

The Problem of Heads of a Fighting Force from Long Ago • 391

Fig. 5. Signed Letters plan, with the controlling head as a bad guy

The Spoken Words plan and the Signed Letters plan need you to send up to (n − 1) times (n − 2)
times (and so on. . .) times (n − m − 1) letters or words. You can make the number of different times
you need to send lower by putting letters or words together and sending them at the same time. It may
also be possible to lower how much you actually need to say at all, but we have not studied this enough
to be sure. However, we expect that a large number of letters will still be needed.

Making a group of computers that you can trust even when there might be bad guys that try to
confuse you in whatever way they want is a hard problem. It seems like any plan to do this will need
to take a lot of time or space. The only way to make it need less is to start supposing things about the
way things might go wrong. One such way is to suppose that a computer may stop responding but will
never respond with something confusing. However, when you need to trust your computers very very
much, you can’t suppose that sort of thing, and you need to spend all time and space it takes to find an
answer for the Fighting Force Heads Problem.

PAST THINGS THAT WE BUILT ON
1. MONROE, R. Up Goer Five. XKCD Computer Funny Pictures, http://xkcd.com/1133/, 2013.
2. SANDERSON, T. The Up-Goer Five Word-Writing Computer Game. http://splasho.com/upgoer5/, 2013.
3. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching a Way to Agree Even When There are Faults. J. ACM

27, 2 (Month Four 1980), 228-234.

This paper was given to us in Month Four 1980; accepted in Month Ten-and-One 1981; and was written again using only the ten
hundred most used words in Month Four 2013. In the interest of not being too long, some parts of this paper have been left out. Sorry
to the people who wrote this paper the first time.

ACM Talking about Computer Word-Sets and Groups, Part 4, No. 3, Month Seven 1982, Pieces of paper 382-401.

���

duoludo: a game whose purpose is games

http://dwrensha.ws/duoludo

David Renshaw

Designing games is hard. In order to create an engaging and coherent space of
interactions for players to explore, a game designer must develop a keen aware-
ness of players’ possible mindsets and intentions throughout the space. It is easy
to overlook points in the space that appear to be inaccessible, and it is difficult
to avoid biases about players’ inclinations even at obviously accessible points. A
game designer needs to be able see things as a newcomer. Human beta testers
can help in developing this awareness, but they usually are inefficient explorers.
They often share many of the biases of the designer and tend to get stuck at
all of the same points, especially if they all start playing from the same point.
Automated testing can also help, but unless it incorporates some sort of sophis-
ticated artificial intelligence, it usually fails to achieve adequate coverage. In any
case, it gives no clue as to how human players, the intended audience, would
react in corner cases. Are there any other options for a game designer in search
of feedback?

Recent work has shown that the powers of human intelligence and comput-
ers can be combined and harnessed to perform tasks that neither can perform
alone. Examples of this principle in action include systems for protein folding [1],
image labeling [2], and text translation [3]. In each of these systems, computers
perform otherwise intractable tasks by offloading to humans the parts for which
humans are particularly well suited. The humans, in turn, find these subtasks
so stimulating and rewarding that they are willing to perform them for free.
To make participation even more enjoyable, these systems may also add game
mechanics such as achievement levels and leaderboards.

Duoludo is a prototype system that aims to apply this principle to the prob-
lem of providing better feedback for game designers. Duoludo takes as input a
game, which must be written in javascript and must implement a simple interface
allowing duoludo to control it. Duoludo serves bite size chunks of the game to
players on the Internet, recording their inputs. Because duoludo gets to choose
which chunks to serve, it can steer players toward unexplored regions. Moreover,
stripped of their original context, these chunks will elicit a more diverse set of
responses than what would be observed in traditional beta testing. The paths
through the game generated in this way may then be stitched together, replayed,
and analyzed in whatever way the game designer finds most useful.

References

1. http://fold.it

2. http://www.gwap.com

3. http://www.duolingo.com

���

The First Level of Super Mario Bros. is Easy with Lexicographic

Orderings and Time Travel . . . after that it gets a little tricky.

Dr. Tom Murphy VII Ph.D.∗

1 April 2013

Abstract

This paper presents a simple, generic method for au-
tomating the play of Nintendo Entertainment System
games.

Keywords: computational super mario brothers, mem-
ory inspection, lexicographic induction, networked enter-
tainment systems, pit-jumping, ...

1 Introduction

The Nintendo Entertainment System is probably the
best video game console, citation not needed. Like
many, I have spent thousands of hours of my life playing
NES games, including several complete playthroughs
of classics like Super Mario Bros., Bionic Commando,
Bubble Bobble, and other favorites. By the year 2013,
home computers have become many orders of magni-
tude faster and more capacious than the NES hardware.
This suggested to me that it may be time to automate
the playing of NES games, in order to save time.1 In
this paper I present a generic technique for automating
the playing of NES games. The approach is practical
on a single computer, and succeeds on several games,
such as Super Mario Bros.. The approach is amusingly
elegant and surprisingly effective, requires no detailed
knowledge of the game being played, and is capable of
novel and impressive gameplay (for example, bug ex-
ploitation). Disclaimer for SIGBOVIK audience:
This work is 100% real.

On a scale from “the title starts with Toward” to
“Donald Knuth has finally finished the 8th volume on
the subject,” this work is a 3. The purpose of this

∗Copyright 2013 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2013 with the reluctant sigh of the Associ-
ation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. CHF 0.00

1Rather, to replace it with time spent programming.

paper is mainly as a careful record of the current sta-
tus for repeatability and further development on this
important research subject. A short video version of
this paper is available for those that hate reading, at
http://tom7.org/mario, and is the more fun way to
consume the results. This page also contains audiovi-
sual material that makes this work more entertaining
(for example, its output) and source code.
The basic idea is to deduce an objective function from

a short recording of a player’s inputs to the game. The
objective function is then used to guide search over pos-
sible inputs, using an emulator. This allows the player’s
notion of progress to be generalized in order to pro-
duce novel gameplay. A design goal is that the objective
function be amusingly elegant (not at all smart, fancy,
or customized to the game) in order to demonstrate
that the game is reducible to such a simple objective.
The search needs to be game-agnostic and practical, but
since the space is exponential (256n)[7], we need to be
smart here.
The objective function, the algorithm to deduce it,

the search strategy, and its implementation are all in-
teresting and will be discussed in that order. I then
discuss the results of using the approach to automate
several NES games. To set the stage, I begin with a
description of the NES hardware and emulation of it.

1.1 The NES hardware and emulation

The NES is based around an 8-bit processor running
at 1.79 MHz, the Ricoh 2A03. 8 bits is really small.
You can see them all right here: 00001111. It’s no co-
incidence that each controller also has 8 buttons: Up,
Down, Left, Right, Select, Start, B and A. It has only
2048 bytes of general purpose RAM. (There is also some
special purpose RAM for graphics, which we ignore in
this work.) 2048 bytes is really small. You can see them
all in Figure 1. As a result, NES programs are written
to use memory efficiently and straightforwardly; usu-
ally there are fixed memory locations used for all the

���

critical game facts like the player’s health, number of
lives, coordinates on the screen, and so on. For exam-
ple, in Super Mario Bros., the single byte at location
0x757 contains the number of lives the player has. The
location 0x75F contains the current world, and 0x760

the current level. The NES outputs 60.0988 frames per
second, which we will just call 60 in this paper.

There are a number of emulators for NES. These work
by simulating the NES hardware, for example with a
2048-byte array for its memory, and simulating the steps
of its 2A03 processor on some ROM, and hooking a key-
board or joystick into the 8 bits of input. (There are of
course many details to work out! But in essence emula-
tion is just that.) This process is completely determinis-
tic, so it is possible to record the sequence of inputs (the
inputs can only be read once per video frame, so this
sequence is 60 bytes per second) and play them back
and get the same result. This also means that an input
sequence can be computed in non-real time, either much
slower or much faster than a NES would normally run.
In this work we use the FCEUX[1] emulator, which is
popular for its accuracy and advanced tools.

Figure 1: 2048 bytes, a 64x32 image.

2 Objective function

Bytes in memory (and sometimes 16- and 32-bit words)
can contain interesting game facts like the player’s posi-
tion in the level or score. The central idea of this paper
is to use (only) the value of memory locations to deduce
when the player is “winning”. The things that a human
player perceives, like the video screen and sound effects,
are completely ignored. As an additional simplification,
we assume that winning always consists of a value going
up—either the position in the level getting larger, the
score getting larger, the number of lives, the world or
level number getting bigger, and so on.

This is actually a little bit too naive; for example,
Mario’s overall progress through the game is represented
by a pair. You start in World 1-1 and the underground

level that comes next is World 1-2 (we’ll call this w = 1
and � = 2). But after you discover the princess is in an-
other castle in World 1-4, the next level is 2-1.2 This
can’t be represented as a single byte going up (some-
times the second part � goes down when we get to a new
first part w), but it can be represented as a lexicographic
order on the pair 〈w, �〉; that is, 〈w1, �1〉 < 〈w2, �2〉 if
w1 = w2 and �1 < �2, or if w1 < w2 no matter the val-
ues of �1 and �2. This matches our intuitive idea and is
also mathematically nice. It also generalizes multi-byte
encodings of things like your score (which can be larger
than 8 bits and so is often stored in 16 or 32), including
both big-endian and little-endian representations.3

More importantly, it allows the combination of se-
mantically unrelated bytes, like: 〈world, level, screen
inside the world, x position on the screen〉 or 〈world,
lives, low byte of score〉. Many orderings may describe
gameplay. These orderings may be temporarily vio-
lated in normal play: Although the score always goes
up, Mario’s x position may temporarily decrease if he
needs to navigate around some obstacle.4 So, to “faith-
fully” represent gameplay, we will generate a set of lexi-
cographic orderings on memory locations, with the idea
that they “generally go up” but not necessarily at ev-
ery step. These orderings will also have weights. The
next section describes how we take a sequence of player
inputs and deduce the orderings.

2.1 Deriving the objective function

In order to derive an objective function, we’ll start with
an abstract subroutine that finds a single lexicographic
ordering nondeterministically. This function takes in
an ordered list of n memories M1 . . .Mn which all have
size m bytes. For example, m = 2048 and n = 100, for
the memories at each of the first 100 frames of someone
playing Super Mario Bros.. It produces an ordered list
of unique memory locations L1 . . . Lk (where 0 ≤ Li <

2In case you never realized this, it is time to learn that the
legendary “Minus World” of -1 is not actually a negative world,
but World 36-1 being incorrectly rendered because there is no
glyph for the 36th digit. The trick used to get to the Minus
World just happens to leave the value 36 in that memory location
rather than initializing it to a useful value. The ROM does not
contain data for world 36 so it just interprets garbage data as a
description of the world.

3A possible additional simplification would be to just take lex-
icographic orderings over bits, which then generalizes to 8-bit
bytes. This is probably too crazy, but just right now I am sort of
feeling like maybe I should try it, though it may be the beer.

4Note to self: Maybe we should give a much higher score
to globally preserved objectives than to locally preserved ones.
But that may presuppose that the input represents a whole
playthrough?

���

Figure 2: A single maximal tight valid lexicographic or-
dering for my 4,000-frame input training data to Super
Mario Bros.. This function is globally nondecreasing,
and is the decimal memory locations 〈 232, 57, 73, 74,
75, 115, 130, 155, 32, 184, 280, 491, 506, 1280, 1281,
1282, 1283, 1288, 1290, 1337, 1338, 1339, 1384, 1488,
1490, 1496, 1497, 1498, 1499, 1514, 1873, 1882, 1888,
1904, 1872, 1906, 112, 113, 114, 2009, 2010, 2011, 1539〉.
This is not a great objective function; there are long
spans where all the memories are equal according to
it, and the nice smooth slopes are happening during
level transitions where the game is ignoring inputs (they
are probably timers counting up each frame, which is
why they are so smooth). Other slicing produces better
objectives.
For reasons unknown—I just discovered this while gen-
erating the figure—all of the objective functions learned
with this method, regardless of the nondeterministic
choices, appear to have this same curve, despite using
different memory locations. It may be that they are
different permutations of bytes that all change simulta-
neously, only on the frames where there are jumps in
this picture, and there are no other orderings that are
tight, valid, and maximal. This is still surprising and
warrants investigation.

m, that is, each is some spot in the 2048 bytes of RAM)
that is a maximal tight valid lexicographic ordering of
M . Let’s start by defining those terms just to be careful.

Given some list of memory locations L1 . . . Lk and a
pair of memories Ma and Mb, we say that Ma =L Mb iff
Ma[L1] = Mb[L1] and Ma[L2] = Mb[L2] and so on for
every Li; that is, the bytes must be equal at each of the
locations. Easy. We say that Ma <L Mb iff there exists
some p ≤ k where Ma[L1] = Mb[L1] . . .Ma[Lp−1] =
Mb[Lp−1] and Ma[Lp] < Mb[Lp]. Put simply, if the
two memories are not equal according to L (have the
same byte at every memory location) then there is a

Figure 3: Ten objective functions trained on different
tenths of the 4,000 inputs for Super Mario Bros.. These
functions are normalized against the range of all values
they take on during the movie; you can see that most are
increasing locally most of the time, but many drop back
to zero around the 3100th frame, when Mario reaches
world 1-2. Within its 400-frame window, each objective
is guaranteed to be nondecreasing.

unique first location (Lp) where they have a different
byte, and that byte determines the order. Ma >L Mb

is just defined as Mb <L Ma; Ma ≤L Mb is just Ma <L

Mb or Ma =L Mb, and similarly for ≥L, and they mean
what you think so don’t worry.

Every L defines a lexicographic ordering (< and =
operators). L is a valid lexicographic ordering of M if
Mi ≤L Mi+1 for 1 ≤ i ≤ n; each memory is less than
or equal to the next memory in the sequence. It follows
that Mi ≤L Mj whenever i < j.

Every prefix of a valid L (including the empty pre-
fix) is a valid lexicographic ordering as well. On a scale
from useless to useful, the empty prefix is a 1 (it equates
all memories), which suggests that some orderings are
better than other. To give a primitive notion of “good”
lexicographic orderings, we define a maximal valid lex-
icographic ordering to be L such that there are no ex-
tensions of L that are valid. An extension of L1 . . . Lk

is just L1 . . . Lk, Lk+1 (where Lk+1 �= Li for 1 ≤ i ≤ k):
Some new memory location that we put at the end of
the order (in the least important position). We do not
consider extending in the middle of the order or begin-
ning, although that would make sense.

Maximal valid orderings are good and it is straight-
forward to produce them (a less constrained version of
the algorithm below), but they have the bummer down-
side that memory locations that never change value for
any M can be included at any position of the ordering,
and all such choices are equivalent. And in fact all loca-

���

Figure 4: Ten objective functions trained on every 100th

memory, starting at frame 0, frame 1, and so on up
to frame 10. Normalized as usual. These objectives
exhibit excellent global progress, but are locally very
noisy. Among the methods I used to generate objec-
tives, this one produces the best results (based on my
intuition about what a good objective function looks
like).

tions must be included to make the ordering maximal.
This is bad because when M contains many locations
with fixed values, we have boatloads of equivalent order-
ings, and they’re also longer than necessary. An tight
valid ordering is one where for each Li there exists at
least one Ma and Ma+1 where Ma[Li] < Ma+1[Li] and
Ma[Lj] = Ma+1[Lj] for all i < j; that is, every location
has to participate in the ordering at least once. The
notion of maximal has to be relative to this property as
well—a tight extension is one that produces a tight valid
ordering, and a maximal tight valid ordering permits no
tight extensions.

On a scale from simple to fancy, the algorithm to
generate L from M is a 3. Given those definitions, the
idea is to start with the empty prefix, which is always a
tight valid lexicographic ordering but usually not maxi-
mal. We then pick a tight extension that is valid; if none
exists then we are done and have a maximal tight valid
ordering. Otherwise we have a new tight valid ordering,
and we repeat.

The pseudocode gives a pseudoimplementation of the
algorithm that is more pseudodetailed. The C++ im-
plementation is in objective.*. C++ is not a good
language for this kind of program but we use it because
the NES emulator is written in C++.

2.2 The objective function, in practice

We can’t just use a single objective function. Choosing
objective functions nondeterministically, we may get a
crap one like “High byte of the score” which only goes
up once during all of our memory observations. We also
can’t just use all of the memory observations, because
there may be brief moments that violate strict order-
ings, like Mario’s x coordinate temporarily decreasing
to navigate around an obstacle. More starkly, the first
few hundred frames of the game are almost always ini-
tialization where the memory temporarily takes on val-
ues that are not representative of later gameplay at all.
In practice, we use the nondeterministic function from
Section 2.1 on multiple different slices of the memory
observations. We also call it many times to nondeter-
ministically generate many different objectives. Finally,
we weight the objectives by how representative we think
they are.

Parameter Alert! This one of the first places
where we have some arbitrary constants, which
are the enemy of elegance. On a scale of ball-
park to obsessively overfit, these constants are
a 2; I basically looked at some graphs while
developing the objective function learning part
of the code to decide whether they were “good
enough” and didn’t tune them after starting
to observe actual performance. Some of those
graphs appear in figures here. For all I know,
these are really bad choices, but it was im-
portant for aesthetic reasons for the objective
function to be brutish. The only reason to
permit these parameters at all is that it sim-
ply does not work to have a single ordering or
to use only orderings that apply to the whole
memory.

Skipping. To avoid being confused by RAM initial-
ization and menu, I ignore all memories up until the
first input by the player. Including these would be es-
pecially suspicious because the RAM’s contents are not
even well-defined until the program writes something to
them.5

Slicing. I generate 50 orderings for M1 . . .Mn; the
whole recording starting immediately after the first

5Emulators tend to fix them to a specific pattern so that em-
ulation is completely deterministic, but in real hardware they are
truly uninitialized, or retain the values from the last reset or game
inserted. Some semi-famous tricks involve removing and insert-
ing game cartridges while the system is running in order to take
advantage of this.

���

(* Prefix is the prefix so far (int list) and remain is the list of memory

locations that we can still consider. Invariant is that prefix is a

tight valid ordering on M. Returns the memory locations from remain

that are a tight extension of the prefix. *)

fun candidates (prefix, remain) =

let lequal = (* list of indices i where

Mi = prefix Mi+1 *)

let notgreater = (* members x of remain where

Mi[x] > Mi+1[x] is

not true for any i in

lequal *)

let tight = (* members y of notgreater where

Mi[x] < Mi+1[x] is true

for some i in lequal *)

in tight

(* Returns a maximal tight valid ordering, given a tight valid prefix and

list of memory locations we are permitted to consider. *)

fun ordering (prefix, remain) =

case candidates (prefix, remain) of

(* No extensions means it’s maximal. *)

nil => prefix

| cand =>

let c = nondeterministically-choose-one cand

let remain’ = remove-element (remain, c)

let prefix’ = prefix @ [c]

in ordering (prefix’, remain’)

Figure 5: Pseudocodes for nondeterministically generating a maximal tight valid lexicographic ordering on some
memories M . The recursive function ordering just orchestrates the selection of an extension until there are no
possibilities remaining, and returns it. The function candidates finds all the possible extensions for a prefix.
First we compute lequal, all of the adjacent memory pairs (represented by the index of the first in the pair) where
the memories are equal on the prefix. Only pairs that are equal on the prefix are interesting because these are
the only ones that will even depend on the extension to the prefix when comparing the memories. We only need
to consider adjacent pairs because on an a scale of exercise for the reader to proof is contained in the extended
technical report, this statement is a you can figure that one out yourself. Valid extension locations are ones where
the memory pairs are never increasing at that location (note that in places where pairs are not equal but strictly
less on the prefix, it’s perfectly fine for the extension to be greater; this is the “point” of lexicographic orderings).
Finally, tight extensions are those valid ones that have at least one pair of memories where the location has a
value that is strictly less.

���

keypress. During gameplay some values really are
completely nondecreasing, like the player’s score and
world/level pair. Figure 2 shows what a global or-
dering looks like. I also generate 3 orderings for each
tenth of the memory sequence, e.g. M1 . . .Mn/10 and
Mn/10+1 . . .M2n/10, etc. The intention is to capture
orderings that are rarely violated, or sections of the
game with unusual objectives (e.g. a minigame or
swimming level). Orderings generated this way look
pretty random, and on a scale from solid to suspicious,
I can’t vouch for them. Then I generate objectives from
non-consecutive memories that are evenly spread out
through the observations: Ten objectives chosen from
every 100th memory, starting from the 0th frame, 1st

frame, 2nd frame, and so on up to the 9th. Similarly
for every 250th frame, and a single objective for mem-
ory sliced to every 1000th frame, with start positions of
0–9. The intention is to capture objectives that grow
slowly over the course of a playthrough, without getting
distracted by local noise.

Weighting. To reduce the importance of randomness
in the learning process, and the arbitrariness of the slic-
ing, each objective function is also assigned a weight.
An ideal objective function takes on its minimal value
on the first frame and maximal on the last (accord-
ing to the ordering), and increases steadily throughout
the observed memories. This is ideal because it allows
us to just follow the gradient to reach good states. A
bad objective function freqently regresses (recall that
although we produce valid orderings, an ordering that
is valid on some slice may not be valid for the whole
sequence of memories). To weight an objective L, we
first collect all of the values (the vector of values of the
memory locations L1 . . . Lk) it takes on throughout the
observations. These may not obey the ordering. We
then sort the values lexicographically and remove du-
plicates.6 Call this V . Now we can compute the value
fraction for L on some M : Extract the vector of loca-
tions M [L1],M [L2], . . . ,M [Lk] and find the lowest in-
dex i in V where the vector is less than or equal to Vi.
The value fraction VF is i/|V |, which is the normalized
value of “how big” M is, according to L, compared to
all the values we ever saw for it. The value fraction is
defined and in [0, 1) for all memories in the observed
set.7 This gives us the ability to compare objectives

6Note to self: I’m not sure how to justify removing duplicates
here. It makes [0, 1, 1, 1, 1, 1, 10, 11] look the same as [0, 1, 10,
11], which is probably not desirable?

7It is not defined when the memory is greater than all ob-
served memories, which we will encounter later. The code returns
|V |/|V | = 1 in that case, which is as good as anything.

on an absolute scale.8 Weighting an objective is now
simple:

Σn−1
i=1 VF(Mi+1)− VF(Mi)

We sum the differences in value functions for each con-
secutive pair of memories. In the case of the ideal func-
tion this is Σn−1

i=1 1/n, which approaches 1. Of course,
when you think about it, this is actually the same as

(VF(M1)− VF(M0)) + (VF(M2)− VF(M1))+
...

(VF(Mm−1)− VF(Mm−2)) + (VF(Mm)− VF(Mm))

and all but −VF(M0) and VF(Mm) cancel out. This
means that the weight we use is just the final value
minus the initial value, regardless of what happens in-
between.9 The mean value theorem or something is
probably relevant here. Lesson about being careful:
I only realized that this code was kind of fishy when
I started writing it up for SIGBOVIK. Not only did it
loop over all the deltas as in the Σ expression above, but
it also summed from i = 0 and kept track of the last
value fraction at each step, thus treating the value frac-
tion of the nonexistent memory M0 as 0. This is wrong,
because the first value fraction may be very high, which
credits the objective with a positive value (e.g. 1) for
that first part of the sum. Objectives that start high on
the first frame are not ideal; in fact, the worst objec-
tives start high on the first frame and steadily decrease.
After writing this up I corrected it to the simple ex-
pression VF(Mm) − VF(M0) and the result was a huge
breakthrough in the quality of the output! I had spent
much time tuning the playfun search procedure (Sec-
tion 3) and not investigated whether the objectives were
being weighted properly. More on this later, but the les-
son is: Bugs matter, and thinking about your code and
explaining it is a good way to find bugs.

Objectives are constrained to have non-negative
weights (I set the value to 0 if negative, which effectively
disables it). We save the objectives and their weights
to a file and then we are done with the easy part.

2.3 Motifs

The very first thing I tried with the objective function is
to just do some greedy search for input sequences that
increased the objective. This works terribly, because the
search space for inputs is large (28 possibilities at each

8This is certainly not the only way to do it, and it has some
questionable properties like ignoring the magnitude of change.
But it is very simple.

9I think this can be improved, for example by taking the de-
viation from the ideal linear objective.

���

frame). Most are useless (it’s almost impossible to press
the left and right directions at the same time, and real
players almost never do it); real input sequences usually
do not change values 60 times per second (rather, the
player holds the jump button for 10–20 frames); some
button-presses and combinations are much more com-
mon than others (e.g. right+B is common for running
right, but start pauses the game). Search quickly ne-
cessitates a model for inputs. Rather than do anything
custom, I just use a really dumb approach: Take the
observed inputs (the same ones that we learned the ob-
jective functions from) and split them into chunks of
10 inputs. Motifs are weighted by the number of times
they occur in the input. There may be a single motif at
the end that’s fewer than 10 inputs.

Parameter Alert! Here I choose the magic
number 10 for the size of input motifs. On
a scale from gravitational constant to pulled
it out of my ass, this is an 8. We could per-
haps justify 10 as being close to the speed of
input change actually possible for a human (6
button presses per second; 166ms). I believe
it is possible to do much better here and the
code contains a few such false starts, but us-
ing motifs was one of the biggest immediate
improvements in the history of this code, so
I went with it. A natural thing to try is a
Markov model, although this has a free pa-
rameter too (the number of states of history).
It is likely possible to do some kind of ab-
stract interpretation where multiple different
input sequences with equivalent outcomes are
explored simultaneously, which might obviate
the need for computing an input model from
the observed play. The playfun algorithm be-
low takes motifs as primitive because of the
way it was developed; I’ll use footnotes to de-
scribe my thinking about how to remove this.

Motifs are written to a file too and then we’re done
with that. This concludes the learning we do from the
example input; everything else is a matter of using the
objective functions and motifs to play the game.

3 Now you’re playing with power

In this section I’ll describe how the objective functions
are used to play the game. On a scale from canonical
to Star Wars Christmas Special, this algorithm is an 7.
So, rather than focus on the particulars of some of the

heuristics, I’ll try to give a story of the different things
I tried, what motivated the ideas in the current version,
and my intuitions about what is working well (or not)
and why. This algorithm is called playfun and it can
be found implemented in C++ in playfun.cc; some
historic versions are in playfun-*.cc.

3.1 Basic software architecture

In order to use the emulator to search for good sequences
of inputs, I needed deeper integration than just observ-
ing memory. The FCEUX emulator is about a jillion
lines of C++-ish code, was intended as an interactive
GUI application, contains support for multiple different
platforms, and the code is, on a scale from a pile of
horse shit to not horse shit, approximately a 2.10 With
a medium amount of suffering I got the emulator com-
piling under mingw in 64-bit mode, and working behind
a streamlined interface (emulator.h). Once a game is
initialized, it is always at an input frame—you can give
it an 8-bit input (for the 1st player) to step a single
frame, or read the 2048 bytes of memory. You can also
save the complete state of the emulator into a vector
of bytes, which allows you to restore the state to ex-
actly that same point.11 These save-states are portable
across sessions as long as the code was compiled and
the game initialized the right way.12 FCEUX must be
single-threaded because it uses global variables galore.
I made several enhancements to the emulator interface,
which are discussed later.

It’s important to know that almost all the CPU time
in all the algorithms discussed in this paper is spent em-
ulating NES frames; it takes about 500 s to process a
single step. Lots of engineering effort goes into reduc-
ing the number of frames the algorithms emulate. The
playfun program takes a ROM file, the learned objec-
tives and motifs, and runs on the console for arbitrarily
long, outputting a movie file consisting of the input se-
quence it think is best. The current playfun algorithm
is much too slow to run real-time, but it would be pos-
sible to have video output as it played. I disabled most
of the video code, however, in an effort to make the
emulation loop run as fast as possible.

10It is, however, an excellent emulator to use, has fancy tools
for recording and editing movies, and is popular in the speedrun
community. I highly recommend it; just don’t read the code.

11This contains the RAM, but also stuff we didn’t consider,
like registers, the Picture Processing Unit’s state, and internal
emulator stuff.

12The original FCEUX supports portable save-states, but I re-
moved that guarantee in order to get the smallest possible byte
vectors. More on that below.

��	

3.2 Naive attempts

The very first thing I tried, as mentioned in Section 2.3,
was to just look at all 28 different possible inputs at
each step, and pick the best one. The inner loop looks
pseudolike this:

for (;;) {
vector<uint8> before = GetMemory();

vector<uint8> state = GetState();

// Try every bitmask of the 8 inputs.

for (int i = 0; i < 256; i++) {
RestoreState(state);

Step((uint8)i);

vector<uint8> after = GetMemory();

double score = Score(before, after);

// Save the best-scoring i...

}
RestoreState(state);

Step(bestinput);

}

Score computes a score of two memories using the ob-
jective functions, which was the point of all that. There
are a few canonical-seeming ways to implement this; the
simplest is to count the (weighted) number of objective
functions o where before <o after. We’ll get to more
later.

I wish this worked, because that would be truly laugh-
able (and is fast enough to run real-time), but on a scale
from doesn’t to does it’s a 1. At best, Mario twitches
in place. The inputs that it plays are insane. There
are lots of reasons, but a clear one is that a single input
rarely affects your progress in the game on the very next
frame. I didn’t really expect this approach to work and
I already knew that the state space is too big to search
exhaustively, which is why I implemented motifs. This
drastically reduces the search space and makes each step
more significant; the inner loop can now be:

for (const Motif &m : motifs) {
RestoreState(state);

for (uint8 i : m.inputs()) Step(i);

vector<uint8> after = GetMemory();

double score = Score(before, after);

// Save the best-scoring motif...

}

This works much better (anything would), though
not much better than you’d expect from just weighted
random playback of the motifs themselves (they mostly
contain motifs like “hold right” and “hold right and A”).
Mario is bad at avoiding danger except by luck, and bad

at jumping hard enough to get over pipes (the button
needs to be held consecutively for maybe 40–50 frames
to jump that high).

These two things—danger avoidance and microplan-
ning to string together multiple motifs in a useful way—
are two sides of the same coin. At least, on a scale from
one side of the coin to the other, it is a two. My at-
tempts to address these two problems converged on a
single idea that is the crux of the good part of playfun.
First let’s start with avoiding bad futures, since that is
somewhat simpler.

3.3 Avoiding bad futures

Scoring a move based on how much better it is than
the previous state causes Mario to make sensible greedy
moves to increase the objective function—until he is
then faced with no good options. This happens very fre-
quently in Super Mario Bros. (and many other games)
because death is not usually a single-frame affair. For
example, once he’s near a Goomba with some velocity,
it’s too late to slow down or jump out of the way; he’ll
die in a few frames. Similarly, he can be in the midst
of a too-short jump over a pit, where he’s destined to
die no matter how he squirms. Moreover, in Mario and
many other games, even death as recognizable to the
player isn’t an obvious loss to these objective functions;
the game’s memory doesn’t change much until the inter-
stitial screen and Mario being reset back to the nearest
checkpoint. So in order to avoid danger, Mario needs
to avoid states that make death a foregone conclusion,
not just avoid death.

This is nothing special; move search in Chess and
pretty much any game involves evaluating an ending
game state and not just the quality of the move itself
(“I captured a piece! Must be a great move!”). Evalu-
ating a Chess state is a delicate matter, but Goombas
and gravity are very stupid opponents. For avoiding
danger, the following works well: Take the state and
run a few seconds (300–500 frames) worth of weighted
random motifs, several times. This gives us a set of
states that could follow our candidate state were we to
keep playing. We judge the candidate state not on its
immediate value compared to our start state, but based
on the random futures that may ensue. In my first
version I used the minimum value of all these random
futures, so that if Mario was getting into a state where
he could die, those states would have low scores. Later
we’ll find that this isn’t the right way to think about
it, but it gives us a big improvement in the quality of
play—Mario cleanly jumps over Goombas. He also gets
very nervous and all like analysis-paralysis when faced

��

with pits of medium size13, which is related to the next
section.

3.4 Seeking good futures

The flipside of avoiding danger is seeking adventure.
Mario can avoid danger for quite a long time by just
waiting at the beginning of the game, until time runs
out. He can dilly dally before a pit, contemplating the
void. But princesses need rescuin’. The same approach
as before works for evaluating a state in terms of its
potential: Try some random futures and look at where
we end up. We could take the max over those scores
if we’re being optimistic, or the average or sum if we’re
trying to judge the general value of the state. In my first
version, which did work pretty well, I took the max; so
basically I had the min of some random states plus the
max of some other states. But why generate a bunch of
futures and take the min of some and the max of some
others? On a scale of Thank You Mario Your Quest
Is Over We Present You A New Quest Push Button B
to I’m Sorry, but Our Princess is in Another Similarly-
Shaped but Not Exactly that Samesuch Castle, this is
an 8.

3.5 Stable futures

Taking the minimum of random futures is always silly
(at least if we believe our objective function), because
nothing other than our own bad memory can force us
to take a series of steps if we know a different better
series of steps. Taking the max is possibly foolish if we
don’t know how to reconstruct a rare good state that
caused the maximum score to be high. Both lead us
to the idea: Keep around a set of candidate futures
that we use for evaluation and search, rather than just
randomly generating futures when we want to evaluate
a state and then discarding them. This turns out to
work really well and be more efficient.

The basic version of the playfun algorithm looks like
this. Maintain NFUTURES futures (this is 40 for the re-
sults presented in Section 5), originally just seeded with
weighted random motifs. We aren’t likely to execute
any of these futures verbatim, but they are intended to
give us high watermarks of what we’re capable of, plus
allow us to judge future danger. As we execute search,
futures will be partly consumed and extended, and some
discarded and replaced.

13The companion website contains videos of this, which are
funny. http://tom7.org/mario/

Each future stores a desired length from 50–800
frames, and whenever it is shorter than that, we ex-
tend it (at its end) with random weighted motifs. The
inner pseudoloop then looks like this:

for (;;) {
vector<uint8> before = GetMemory();

vector<uint8> state = GetState();

set<vector<uint8>> nexts;

for (Future f : futures) {
nexts.insert(f.First10Frames());

f.ChopOffFirst10Frames();

}

while (nexts.size() < NFUTURES)

nexts.push back(/* random motif */);

for (vector<uint8> &next : nexts) {
RestoreState(state);

for (uint8 i : next) Step(i);

double score =

ScoreByFutures(before, futures);

// Save the best-scoring next...

}

ReweightMotifs(best next, motifs);

ReplaceBadFutures(futures);

ExtendFuturesToDesiredLengths(futures);

}
At each iteration of the loop we will find the best next

10-frame sequence to commit to. Rather than search
over all motifs, we search over the first 10 frames of
each future. This has several important consequences.
First, since futures are generated by weighted motifs, it
makes it more likely that we spend CPU time evaluat-
ing motifs that are common; the code from Section 3.2
always explores every motif, even rare ones. Second, it
guarantees that if we pick some 10 frames on the basis
of a single good future, we don’t have to worry about
recreating that future; it will still be among our futures
for the next round. This is key: It allows us to use the
determinism of the game to replay a really good future
if we find one, not just use average random futures to
assess how good a state will be.

The function ScoreByFutures saves the state, then
runs each of the NFUTURES futures to get a final state
and memory. We score each final memory relative to
the start memory. The particulars of scoring are not as
interesting as the general idea, which is:

The potential 10-frame next sequence that we’re

���

evaluating gets an optimistic score. This is based
on the futures for which the objectives go up. This
is always non-negative.

Each future is also given a score, which is the sum
of scores from all the different next sequences, re-
gardless of their sign.

The purpose of the first is to identify a good next

sequence. We take the sequence with the highest opti-
mistic score. The idea is that this is the sequence that
gives us the best outcome if we continue to control what
we do in the future.

The purpose of the second is to identify which futures
are good. A good future tends to bring good outcomes
regardless of the immediate next step. Random futures
that make is walk left when the good stuff is to the
right, or jump when there are spikes nearby above our
head, will receive negative scores for many or all of the
next sequences.
ReweightMotifs changes the weight of motifs that

match the best next sequence that we just committed
to, if we think that we made progress on this step. The
idea is to learn which sequences tend to work well for
us; this might be different from what the human player
did. For example, in run-to-the-right-and-jump kinds
of games, human players tend to hesitate more before
obstacles and enemies than a computer does.14 Know-
ing whether we made progress is kind of difficult, since
we can almost always find some move that increases the
objectives locally. For this I use the same approach of
value fraction from Section 2.2 based on a sample of
memories that we’ve seen so far. If we appear to be
progressing then the motif is weighted up; if we’re re-
gressing then it is weighted down.
ReplaceBadFutures kicks out the the futures with

the worst total scores, so that over time the random fu-
tures become good futures. Of course, we always have
to keep randomly adding to the end of each future, and
who knows what crap we’ll find? A late addition to the
algorithm replaces some proportion of these with mu-
tated versions of the best scoring future. This helps us
from messing up a good future by appending crap to it,
since we have multiple copies of it. It also makes search
more efficient, since futures that share common prefixes

14That said, this part was an early idea and is probably not
necessary. It’s suspicious because these 10-frame sequences are
not necessarily motifs (10 is the same as the normal motif length,
and futures are generated by motifs, but they can become desyn-
chronized because of the final incomplete motif, future mutation,
and other things). So sometimes the chosen sequence doesn’t af-
fect weights. I think this would be better if we kept a Markov
model and updated it no matter what sequences we generated.

can often benefit from caching (Section 4.1). Currently
mutating a future involves chopping off its second half
(it will get extended to the desired length in the next
step), and a 1/7 chance of dualizing the entire sequence.
Dualization swaps the left and right buttons, the up and
down buttons, B and A, and select and start. The idea
of this is to occasionally introduce very different futures
to help us get out of stuck situations where we should
really be turning around or something like that.

During the development and tuning of the algo-
rithm, I sometimes observed ReweightMotifs and
ReplaceBadFutures conspiring to create a total mono-
culture of futures, where the weight of a single mo-
tif (specifically “press no buttons”) went out of con-
trol and all futures just consisted of waiting. Waiting
is usually a local improvement to some objectives be-
cause of internal frame counters and the cursor used
to control music playback. To guard against this, mo-
tifs have a maximum (and minimum) possible weight in
ReweightMotifs, and ReplaceBadFutures always en-
sure that some fraction of the futures are completely
random (ignoring motif weights).

Parameter Alert! This is really the
worst part in terms of parameters. They are:
NFUTURES, the number of futures to maintain
(40); NWEIGHTEDFUTURES, the number of fu-
tures that are weighted, as opposed to totally
random (35); DROPFUTURES, the number of
the worst-scoring futures we completely drop
(5); MUTATEFUTURES, the number of worst-
scoring futures that we replace with mutants
of the best future (7); MINFUTURELENGTH and
MAXFUTURELENGTH, which put bounds on the
sizes of futures (50 and 800); OBSERVE EVERY,
the frequency with which we sample mem-
ory for computing the value fraction for mo-
tif weighting (10); ALPHA, the multiplica-
tive factor for up- or down-weighting motifs
(0.8); MOTIF MIN FRAC and MOTIF MAX FRAC,
the bounds on motif weights (0.1 and 0.00001).

Each is a scarlet letter of personal shame
and future work is to eliminate them. In my
opinion the least excusable are the bounds
on future length, since these are related to
what portion of time is “interesting” from a
game perspective—for example, the max fu-
ture length must exceed the number of frames
that transpire after Mario dies but before he
respawns, or the algorithm cannot properly
avoid death. In my opinion this requires too
much knowledge of the game. I don’t have a

���

good idea about how to compute this, at least
without a human providing an input movie
of dying (which would help for lots of other
reasons)—but that would complicate the out-
put of the learning process, which violates a
primary design goal.

NFUTURES is another bothersome one, but
there is more hope here. Basically it trades
off computation time for quality of play, and
more seems to always be better. We do have
runtime metrics that could be used to dynam-
ically change NFUTURES. For example, we
could use the notion of improvability from Sec-
tion 3.6, or the value fraction, the gauge the
marginal value of searching an additional fu-
ture. Or something like that. This might actu-
ally help performance because we do the same
amount of work (modulo caching) even during
periods that the inputs are being ignored, like
between worlds in Super Mario Bros., as we
do when the going gets rough, and searching
for the exact right delicate sequence of inputs
would benefit from more options. The appear-
ance of pausing in the output for Bubble Bob-
ble (Section 5.5) suggests that it knows all the
futures are bad and needs to search different
ones, and corroborates this idea.

3.6 Backtracking

The algorithm above always makes progress at the same
rate of 10 frames per iteration. Sometimes it can get
stuck in local maxima. Super Mario Bros., my tuning
game for this work, seems almost to have been designed
to thwart playfun. The first level is pretty easy once
you have a decent algorithm, and early versions beat it
without any trouble. It’s mainly about avoiding Goom-
bas and planning far enough ahead to make high jumps
over pipes and pits (see the accompanying videos for
amusing struggles with these). World 1-2 provides a
challenge you may recognize from your youth, immedi-
ately followed by something that computers find much
harder (Figure 6).

I literally spent about six weekends and thousands of
hours of CPU on this problem. First, the overhang is
set up so that enemies emerge from it just as you arrive.
This means that loose play (imperfect enemy avoidance)
tends to get you killed right here. Mario has found
a number of different solutions to this problem, from
waiting, to kicking turtles from the left to clear out the
enemies, to timing his jump perfectly (it is possible!) to
stomp the turtle after bouncing his head off the ceiling.

Figure 6: This is where it starts to get hard, even with
lexicographic ordering and time travel. This overhang
is very tight in terms of the inputs that can get you
through it; random play tends to kill you because of
the advancing enemies that can’t easily be jumped over.
Greedy algorithms can’t resist the ledge with the coins,
but then would need to turn around.

It’s fun to see the different approaches and is a good
benchmark for whether the search algorithm is actually
doing a good job at tactics.

Immediately after this is an important test of longer-
term planning. Most of my early solutions would jump
up on this ledge with 4 coins, since the score is a com-
ponent of many lexicographic orderings15 and coins give
you points. Down below is undesirable in the short
term because of the enemies. Then Mario would feel
stuck and just hump up against the wall jumping in
this tiny dead end until time ran out. The game con-
tains some bugs (you have probably seen them) that
allow the screen to be scrolled without Mario actually
progressing; these little mini scrolls, plus the givens like
the frame counter and music cursor, prevent Mario from
getting out of the local maximum. This is extremely
frustrating. I decided to add some longer-term plan-
ning into the search procedure in order to try to help
in these kinds of situations, as well as the occasional

15Maybe even all of them, since it should be globally obeyed; it’s
therefore a valid extension to any ordering that doesn’t already
include it. It’s not necessarily a tight extension, however, so it
may be excluded for that reason, or because during initialization
it is not actually zero and so not globally obeyed. I never checked
this stuff because I wanted to avoid any temptation to overfit the
learning algorithm to the particulars of any game.

���

deaths I would see.
Every CHECKPOINT EVERY frames we save the state,

and then every TRY BACKTRACK EVERY rounds, we do a
backtracking phase if we can. We just need to find a
checkpoint at least MIN BACKTRACK DISTANCE frames in
the past. Call that point start and the current point
now. The backtracking routine looks like this:

Let improveme be the inputs between start and
now.

Get replacements, a set of input sequences we
might use instead. These are usually based on
improveme.

Add improveme to the set of replacements.

Truncate the movie to start.

Now, do the normal playfun loop as though the
(truncated) futures are whatever our current fu-
tures are, and the set of next sequences are the
replacements array.

Whatever the best one among those is, keep it.
Don’t update motifs or futures, however.

The idea is that we take a large sequence from our
recent past, and the same futures we’re already using,
and see if that sequence can be improved, according
to our objective functions, and using our same futures.
Since the existing sequence is always one of those, if it
is the best one, then the backtracking phase is a no-op.
If we find something better, we slot it in and continue.
So the only risk here is if our objective functions aren’t
good (we take as given that they are) and the only cost
is time.

Generating the candidate set of replacements uses a
bunch of different techniques. They are:

Random. We generate a random sequence of the
same length as the improveme sequence.

Opposites. We dualize (swap left with right, up with
down, start with select, and B with A) and/or reverse
random spans of the improveme sequence. The idea is
to try to introduce some variety in cases where we’re
really getting stuck. This was specifically in hopes that
Mario would walk off the coin ledge in 1-2 and then find
that the course was clear below. I felt okay about this
since this seems to be a generic notion (the buttons do
have semantics that are common to most NES games
where left and right are opposites), but that may just
have been rationalization since I was getting desperate.
It didn’t work; see below.

Ablation. Randomly blanks out buttons from the in-
put. For example, if we don’t need to jump and jumping
is slowing us down or something, this can remove that
and make a small improvement to the sequence.

Chop. Removes random spans from the input. This
iteratively removes spans as long as the previous span
was an improvement (see below). This can cause the
movie to get shorter by removing parts that weren’t
contributing anything.16

We use the following formula to score a potential im-
provement:

The start state is as discussed, old end is the state
at now, and new end is the state after the potential im-
provement sequence.

∫ o

s
is the integral of score changes

along the improveme path and
∫ n

s
along the candidate

improvement. The integral is the weighted sum of the
objectives increased minus the weighted sum of the ob-
jectives that decreased, at each step, all summed up.
This works better than just computing the weighted
score from e.g. start to old end when they are sepa-
rated by many frames (typical backtrack distances are
several hundred frames). The expression n− o17 is just
the weighted sum of objectives that increased minus the
weighted sum of objectives that decreased between the
old end state and new end state; we have no option of
computing the integral here because we don’t have an
input sequence that goes from the old end to the new
end (and there almost certainly isn’t one). We require
that three conditions hold:

1.
∫ n

s
≥ ∫ o

s
,

2.
∫ n

s
> 0

16However, in games where an objective function includes some-
thing like a frame counter or the music cursor, shorter sequences
always score lower than otherwise equivalent longer sequences.

17This is not numerical minus but minus according to the set
of objective functions. Just roll with it.

���

3. n− o > 0

The integral has to be at least as good as before, the
new integral has to be positive, and the new end state
needs to look better than the old end state (the triangle
inequality does not necessarily hold here). If they all do,
then the score for the improvement is

∫ n

s
− ∫ o

s
+(n−o),

which is guaranteed to be positive.
Even if we have many possible replacements, we try

only the ones with the best scores; due to the particulars
of the implementation there is not a simple constant
describing this maximum, but it’s around 220 with the
parameter settings used in this paper.

Parameter Alert! Again! The humiliat-
ing appearance of constants! There are many
here, having to do with the number of po-
tential replacements we use of each type, the
maximum number we keep, how often we bac-
track, and how far. I am not totally satisfied
with how backtracking works (see below), so I
don’t want to spend too much energy speculat-
ing about how to reduce the parameter space
here; I’d rather replace the method wholesale.

The improvability of a state is the fraction of these
potential improvements that are legal improvements, as
above. Based on my analysis, states that are highly im-
provable (> 30%) tend to be “worse” (more stuck, closer
to death, or whatever) than those that are not very im-
provable (< 5%). This isn’t being used for anything
currently, but getting an absolute picture of how good
a state is (as opposed to simply comparing it to an adja-
cent state) is one of the difficulties with this approach,
so this may be a useful notion for future directions.

Takes of woe, tales of joy. Backtracking was ini-
tially added in order to fix the mario coin ledge problem
in 1-2. It did not help with this. Older versions of the
code would have Mario get past this spot, probably by
luck, but in these he would get stuck in an embarrassing
way on a small pit later, or jump straight into an enemy.
Most of the approaches that actually looked solidly good
elsewhere were failing badly here. As I started writing
up this paper, on an airplane, I discovered the bug in the
weighting of objective functions described in Section 2.2.
On my trip I had let playfun run with particularly high
constants (NFUTURES = 50, lots of backtracking candi-
dates, etc.) and it had spent about a thousand CPU
hours playing to this point, grabbing the coins, and then
dying of timeout, then losing all its lives, starting over,
and getting to this point again! After fixing the bug,

Figure 7: After making me feel so successful by finally
cleanly finishing world 1-2, Mario immediately jumps
into the first trivial pit in 1-3. I believe what’s going on
here is that this is actually the best future, because re-
setting back a single screen isn’t a large loss, lives aren’t
included in the objective function, and probably the rest
of the futures were struggling to make progress. This
level is very jumpy and probably needs more futures to
navigate its obstacles. In any case, Mario, Touché.

I tried again, and it was a huge breakthrough: Mario
jumped up to get all the coins, and then almost imme-
diately jumped back down to continue the level! On his
first try he beat 1-2 and then immediately jumped in
the pit at the beginning of 1-3 just as I was starting to
feel suuuuuper smart (Figure 7). On a scale of OMFG
to WTFLOL I was like whaaaaaaat?

Seeing this huge improvement changed my idea about
what part of the code needed work (I now believe that
simpler search strategies might work and better lexico-
graphic order generation and weighting is called for).
But, this was already in the midst of writing up the
paper, so instead I spent the CPU time running the
current version on a bunch of games. Those results
are described in Section 5 and videos are available at
http://tom7.org/mario/. In the next section I de-
scribe some of the performance improvements I made,
and other modifications to the emulator interface.

���

4 Performance

Performance is really important, both because the qual-
ity of the output is CPU-bound and because I am im-
patient. In its current state, running playfun is an
overnight affair; it takes about an hour of real time to
produce 1000 output frames (16 seconds of gameplay)
on a high-end desktop machine. Other than a trick that
I didn’t end up using, these performance ideas are not
at all new, but they are documented here for complete-
ness. I certainly spent lots of time on ’em!

4.1 Caching of emulation

The most expensive part, by far, is running a step of em-
ulation. It takes about 500 s to emulate a single frame,
though this can vary depending on what instructions are
actually executed (recall that each frame corresponds to
many many 2A03 instructions; there are approximately
16,000 clock cycles per frame!). Hardware like the Pic-
ture Processing Unit and sound chip are emulated as
well, which may actually be less efficient than the ac-
tual hardware (for example, the sound hardware can
implement filtering with passive physical components
like capacitors, but FCEUX contains a finite impulse re-
sponse filter running on IEEE floating point numbers).
We want to avoid executing a step more than once, if
at all possible.

Caching is so canonical that some have called it (pe-
joratively) the only idea in Systems research. And it is
what we do here. The emulator adds a call

void CachingStep(uint8 input);

with exactly the same semantics as Step. However, it
first checks to see if this exact input has been executed
on this exact start state before. If so, it just restores
the cached result state instead of executing the step.

I use the excellent CityHash function[4] as the hash
code, and use a least-recently-used approach to clean
out the hash table when it has more than a fixed slop
amount more than the target size. States are large be-
cause they contain both the savestate of the before and
after state. I have plenty of RAM, so I allow each pro-
cess to store up to 100,000 states with 10,000 states of
slop, which takes about 3 gigabytes per process.

Caching adds a little bit of overhead (a single step
is about 13% slower, amortized), from saving the state,
computing the hash code, copying the state into the ta-
ble, and cleaning the hash table periodically. A cache
hit is a zillion times faster than actually executing the
step, however, so as long as the hit rate is more than
13%, it’s worth doing. I use caching step in most places

inside playfun, except when I know that the state can’t
have been computed yet. The playfun algorithm is
particularly suitable to caching: The set of potential
next input sequences nexts usually share several input
prefixes, and we keep around futures for some time, so
we can often end up evaluating the same one under the
same conditions many times. Moreover, mutant futures
usually share their first half, making them half price. A
really important property of caching is that it’s based on
the state of memory but doesn’t care about the actual
sequence used to get there. This means that in cases
where the input is ignored (Mario ignores the jump but-
ton most of the time while in the air, for example, and
ignores all inputs between levels) we reach equivalent
states and can use the cache if the next input is exactly
the same. The ideal approach here would be to follow
how the bits of the input are actually read by the code,
and insert a more generic key into the hash table. For
example, if we see that the code never even read the
bit of the input corresponding to the up direction, then
we can reuse the step for an input that matches all bits
but the up bit! This of course requires a lot of mucking
around in the internals, which on a scale of within the
scope to beyond the scope of this article is a 9.9.

Software engineering lesson: Initial results from
caching were disappointing and I thought the overhead
was to blame. I made several low-level tweaks to avoid
copying, etc., to reduce the overhead from 36% to 13%.
Then I discovered that there were 0 cache hits ever, be-
cause of a bug (I was inadvertantly using pointer equal-
ity on keys instead of value equality, so keys were never
found). Check basic things about your code’s correct-
ness before going on an optimization sortie!

4.2 Space optimizations

Before I had the idea that is the actual subject of this
paper, I was playing around with other emulator search
ideas that involved storing very very large numbers of
states. This necessitated minimal representations of
savestates. FCEUX uses zlib internally to compress
states, which works well; they shrink from something
like 13,776 bytes18 to an average of 2266. I made some
modifications to the save/load routines to make this as
small as I could manage. I removed the backing buffer,

18I don’t completely understand the NES architecture and em-
ulation strategy, but I believe some games include expansion chips
that require more space for save states. All this work is based on
the 2048 bytes of main NES RAM, as you already know. Perhaps
clever video game authors from the past can protect against this
paper’s approach by storing important game facts inside expan-
sion chips in the cartridge.

���

which is only used for drawing graphics, movie info,
header bytes that are constant or already known (saves-
tate size), which shrunk the compressed size to an av-
erage of 2047.42 bytes. That meant I could fit about
32 million savestates in RAM at once, which would be
kind of amazing if I could tell my 8 year-old self that.

Compression algoritms work well when there is lots
of redundancy in their input. Comparing memories be-
tween two frames in some game, you’ll often see only
a few differences. Some of the memory contains stuff
that’s essentially read-only, even. To improve the com-
pressibility of savestates, I introduce the idea of a ba-
sis state. This is any non-empty sequence of bytes
which is an additional argument to the LoadState and
SaveState functions. It’s subtracted from the savestate
prior to compression (it doesn’t have to be the same size;
it’s treated as an infinite repetition of those bytes). If
the basis is the same as the savestate, then the result is
all zeroes, which compresses nicely (of course, now you
need to have the basis in order to load the state, which
is the same as the savestate, so that didn’t save you
much!). But memories during gameplay often don’t dif-
fer much, so I save a state from any arbitrary frame in
the game and then use that as the basis for everything
else. This factors out any common parts and makes the
states much more compressible: The average size drops
to 1870.41 bytes.

Using a better compression algorithm like the
Burrows–Wheeler transform[3]19 would probably help
too; zlib implements LZW which is only mediocre. How-
ever, on a scale of throwing my computer out the win-
dow to wanting to reimplement all software in my own
private SML library, I just can’t stand getting 3rd-party
libraries to compile and link into my applications, so I
didn’t even try. In any case, I abandoned this direction,
which was not working well even with lean savestates.

For playfun, RAM is not a bottleneck at all. I dis-
able compression completely on savestates, including
the builtin zlib stuff (which is actually rather slow) and
just use raw savestates. The removal of unnecessary
headers and stuff is still there, and saves a few bytes
and CPU cycles, but there was no reason to actually do
it for this particular work. But sometimes I do unnec-
essary things.

4.3 MARIONET

The playfun algorithm involves running 40 or so dif-
ferent 10-sequence next steps and then scoring them

19This is really one of the all-time great algorithms. If you don’t
know it and you like this kind of thing, you should check it out.
It’s so surprising and elegant.

against NFUTURES different futures. Each next and each
future is completely independent and dominated by the
cost of evaluating emulator steps. The ideal thing would
be to use threads and shared memory to run these steps
in parallel. As I mentioned earlier, FCEUX is hopelessly
single-threaded.

Eventually I realized I needed to search more states
than I could in a single thread, and so I created MAR-
IONET. It’s a play on words, a double entendre of
“Mario network” and “Marionette”, which is obvious.
This is a mode whereby playfun can be started in
“helper” mode (listens on a port for work to do) or
“master” mode (connects to a list of ports to run work
on), in order to run many emulators in different pro-
cesses.

The processes communicate over TCP/IP. I only run
it on my local computer, but it would be reasonable
to run it on a cluster or possibly even the Internet. I
used SDL’s SDL Net[6] as a portable network interface
in the hopes of keeping it platform-agnostic (FCEUX is
basically portable so it would be a shame to make this
Windows-specific, though I am not eager to try to get
this thing to compile on other platforms, I gotta be hon-
est). SDL is a nightmare to get working with mingw in
a 64-bit compile, as usual, and SDL Net contained some
bugs20 that I had to spend some time working around.
Anyway, I’m just complaining. For serializing requests
and responses to bytes, I used Google’s Protocol Buffer
library[5], which is designed for this kind of thing.

Helpers all start up with the same ROM and motif
and objectives loaded, so that they can simulate what-
ever the master would compute.21 They just wait on
a port for the master to send a request, which can be
either “try this set of nexts with these futures and send
me the results” or “try to find n improvements of these
inputs improveme using so-and-so approach.” In either
case we send the base state as a serialized savestate.

The master does the outer loop of the algorithm and
all the writing to disk and so on. When it needs to
do an expensive step like the inner loop, it prepares
a set of jobs and sends them to workers using a little
fork-join library (netutil.*). The library keeps track
of the outstanding jobs and which helpers are working,

20In particular, the SDLNet TCP Recv call is supposed to block
until it has received the entire requested length, but it occasionally
returns early.

21Only the master reweights motifs, since it needs a single sam-
ple of memories that we’ve observed. That means that in cases
where a helper generates random motifs, it does so with respect to
the original human weighting. There are some other small things
I simply avoided doing because they would require too much co-
ordination between processes or make the RPCs too large; MAR-
IONET was part of the system for much of its development.

���

and feeds them work when they are idle, until all the
jobs are complete. It’s even got a color ANSI progress
bar and stuff like that.

Utilization is very good (Figure 8), and we get al-
most a linear speedup with the number of processes, up
to the number of hardware threads the system supports
(twelve). Actually, in addition to the computer remain-
ing usable for other stuff, n− 1 helpers may work a bit
better than n, because each of the helpers is then able to
avoid preemption. Since the driver loop is synchronous,
having one laggard process slows the whole darn thing
down while everything waits for it to finish.

Figure 8: Utilization with 12 helpers and one master
on a 6-core (12 hyperthreads) processor. Looks good.
Keeps the bedroom warm.

MARIONET is a huge improvement and was what
enabled using 40+ futures in a reasonable amount of
time, which is key to high-quality output. It’s obviously
the way you want to run the software, if you can get it
to compile. There is one downside, though, which is
that it reduces our ability to get lucky cache hits across
nexts that are similar (or have the same effect), and
when replaying the winner as we commit to it. It’s
worth it, but smartly deciding which helper gets which
tasks (because they share prefixes, for example) would
save time. Running it all in one process with a shared
memory cache would be the best, as long as the lock
contention could be kept under control.

Figure 9: Mario bounces off one Goomba up into the
feet of another. Not only doesn’t he have enough ve-
locity to reach the platform, but he’s about to hit
that Goomba from below. Believe it or not, this ends
well: playfun is happy to exploit bugs in the game;
in this case, that whenever Mario is moving downward
(his jump crests just before the Goomba hits him) this
counts as “stomping” on an enemy, even if that enemy
is above him. The additional bounce from this Goomba
also allows him to make it up to the platform, which he
wouldn’t have otherwise!

5 Results

In this section I describe the results of running learnfun
and playfun on several NES games. These games were
all played with the same settings developed and tuned
for Super Mario Bros.; that is, this was the result of
just running the program the first time on a recording
of me playing the game briefly. Every game I tried is
documented here; lack of CPU time before conference is
the main reason your favorite is not included. The web-

���

site http://tom7.org/mario/ contains video versions
of some of these, which may be more fun. Let’s begin
with the ur game, Super Mario Bros..

5.1 Super Mario Bros.

This game is an obvious benchmark and the one I
used during the development of learnfun and playfun.
Some parts of the algorithm (see e.g. Section 3.6) were
developed specifically to get around problems in the
ability to play this game, though I believe simpler meth-
ods would also work on this game, now that some im-
portant bugs are fixed.

Automated Mario is fun to watch, and definitely my
favorite. The familiarity of the game, the combination
of human-like maneuvers and completely bizarre stuff,
daredevil play, and bug exploitation (Figure 9) are all
a delight. It’s even funny when it fails, watching Mario
struggling with obstacles like tiny pits, or making a
heroic move followed by a trivial mistake. I recommend
watching the videos.

This algorithm works well on Super Mario Bros., and
I think that with some improvements it could play quite
far into the game. It probably can’t beat the game;
Worlds 7-4 and 8-4 require some weird puzzling that
we all needed Nintendo Power Magazine’s help to solve
as kids, and are not just a matter of running to the
right and avoiding obstacles. In the current incarna-
tion, Mario breezes through World 1-1 every time, con-
sistently beats 1-2 (I’ve only tried about three times
with the newest version of the code, but each time he’s
succeeded) and has limited success on 1-3 but eventu-
ally suicides too many times. I’ll keep trying.

The Mortal Kombat-style Finish Him! to any ma-
chine learning algorithm is overfitting, however. Does
the technique work on other games, without endless
tweaking as I did with Super Mario Bros.? On a scale
of no to yes, this is both a 1 and a 10; some games work
even better than Mario and some are a disaster.

5.2 Hudson’s Adventure Island

This is a bad, difficult, but likable game featuring a
skateboarding cherubic island guy called Master Hig-
gins, whose girlfriend has been kidnapped by King
Quiller. He basically runs to the right and can throw
or ride stuff that he finds in eggs. The controls are
pretty soft and danger is everywhere. The objective
functions that work are probably pretty similar to Super
Mario Bros., but there are fewer obstacles to navigate—
the difficulty for humans mostly comes from the speed
and reaction time. Master Higgins doesn’t care about

bumping into rocks and dropping his health almost to
nothing (but then is careful about health), and once
he gets a weapon his aim anticipates off-screen enemies
and he looks pretty savvy (Figure 10). His weakness
regards holes in the ground, which he sometimes jumps
into, probably for the same reason that Mario some-
times does. His “pot bonus” was 16720. Master Higgins
beats several levels and makes it into the cave before
losing his last life by jumping straight into a vibrating
skull with swirling fireballs around it, which on a scale
of Darwin Award to dignified demise is approximately
a 6, in my opinion.

Figure 10: Master Higgins putting safety first.

5.3 Pac-Man

One of the smallest NES games at a mere 24kb, Pac-
Man is a classic that I won’t belabor. It has a fairly
straightforward objective—your score—and there is no
timer or anything to worry about but the ghosts. A
good planner could probably solve Pac-Man with just
score as an objective (keep in mind that with RAM in-
spection and because of ghost movement, this is not
just a simple matter of using A∗ or something to plan a
path through the Euclidean grid—states aren’t repeated
hardly ever). Automating this game works pretty well;
Pac-Man doesn’t have much trouble avoiding ghosts ex-
cept when they trap him. Play is pretty strange: He
doesn’t necessarily grab nearby dots (hard to explain)
and often switches direction in the middle of a corridor,
unlike human play which is usually efficient sweeps of
the dots when ghosts aren’t near. However, automating

��	

has a huge advantage over human players with respect
to ghosts, and Pac-Man is alarmingly fearless. He chases
ghosts down corridors, turns straight into them, know-
ing that they will change direction in time to not run
into him (this makes the time travel advantage quite
stark). Figure 11 shows gratuitous daredeviling as he
ducks in and out of a tiny sliver of space between two
ghosts, then does it again, and survives.

Eventually, Pac-Man gets far enough away from the
remaining dots that none of his futures bring him near,
and without any other objective to seek out, runs into
ghosts. He dies on the first level with 13 dots left.

5.4 Karate Kid, The

Karate Kid, The, is the typical trainwreck that follows
when a beloved movie is turned into a video game. The
game has awful controls and integer-only physics with
massive throw-back upon collision, strange mini-games
with no explanation, annoying debris flying through
the sky, and luck-based fighting. It was probably only
ever finished by kids with extreme discipline and self-
loathing, or kids with only one video game available to
them. It begins with a karate tournament which is even
less fun than the main game, which is sort of a plat-
former with very few platforms.

In this game I played 1,644 frames, just the first two of
four opponents in the karate tournament. Automated
by playfun Daniel-San is able to punch and kick the
low-level karate noobs, preferring to spend all his super-
strong Crane Kick power moves right away. His style
doesn’t make much sense, sometimes facing away from
the opponent, or throwing punches and kicks when the
opponent isn’t near. He doesn’t worry much about tak-
ing damage. He gets to the final round and makes a
valiant effort, at one point taking himself and the karate
boss to 0 health simultaneously. But in this game, tie
goes to the computer-controlled player without feelings,
so it’s back to the title screen for Daniel-San. The result
is not impressive at all; the main goal here is to reduce
the opponent’s health, but our objective function can
only track bytes that go up. Still, the automated ver-
sion gets farther than my input did.

5.5 Bubble Bobble

Let’s take a journey to the cave of monsters! This lovely
game features two stout dinosaurs called Bub and Bob,
who jump around in a series of single-screen caves. You
can shoot bubbles to encase monsters and then pop the
bubble to turn them into fruit or other treasure; clearing
all the monsters takes you to the next stage. Bubbles

Figure 11: Pac-Man showing utter disregard for the
ghosts’s personal space. This occurs around frame 6700
of the output movie. Pac-Man slips into the space be-
tween Blinky and Inky to touch the wall, comes out un-
harmed, then momentarily teases Clyde before escaping
to vibrate some more in empty corridors.

are also necessary for navigating around, since you can
bounce on your own bubbles when holding the jump
button.

I was surprised that automating this game works at
all, since there is no obvious spatial gradient like in
Super Mario Bros., and few local greedy rewards like

��

Figure 12: Daniel-San blowing his last Crane Kick on a
karate noob like there’s no tomorrow, which there won’t
be if he uses up all his power moves like that. Note
that the Chop approach to backtracking was used to
generate this movie frame, appropriately.

in Pac-Man. Bub initially wastes his lives (a common
theme in games where the respawn interval is low—
it just looks like a fast way of warping to the cor-
ner). When he’s near monsters he shows good tactics in
shooting and popping them simultaneously, even doing
so while facing away from them, which I didn’t know
was possible. At the beginning of the movie he prefers
to hide in the bottom-left corner, but soon starts jump-
ing all around the level, bouncing on his own bubbles
and so on, almost like a real player would. He beats
more levels than my input movie did! Since it takes
two start button presses to enter the game, the second
START is part of the input motifs. Amusingly, Bub
uses this to his advantage to change the synchroniza-
tion of his futures, and when the situation gets really
tight, he’ll pause the game until a good future comes
around (Figure 13). Paused states probably look like
modest progress since memory locations like the music
cursor are still advancing.

After a harrowing escape from the ghost thing on
level 4, Bub makes it to level 5 (my input movie quits
at the beginning of level 4!), at which point I stopped
the search because it was getting pretty pausey and I
wanted to see some other games before the SIGBOVIK
deadline.

Figure 13: Bub navigates this game surprisingly well.
Once he’s on his last life, he becomes careful and pauses
the game when things are looking grim—here pausing
for about a thousand frames, burning through the fu-
tures until one randomly comes along that looks good.
He then unpauses and executes that good future, killing
three of these monsters in short order.

5.6 Color a Dinosaur

This is a strange NES “game” where you do the epony-
mous action, probably intended for kids. It’s not very
fun to watch the weird slow floodfill algorithm color in
parts of a dinosaur, and there’s no objective to be found.
Predictably, the approach of this paper doesn’t simu-
late human play very well. There doesn’t even seem
to be an objective for humans to suss out, except for
the open-world sandbox of two-color dinosaur coloring.
The automated pencil manages to “color” two differ-
ent dinosaurs (Figure 14), though the play looks pretty
spastic and random.

5.7 Tetris

Tetris is a block dropping game, also known to the an-
cients. The Nintendo implementation is infamous for
being inferior to the unlicensed Tengen version, which
Nintendo tried to sue out of existence. Here I try to au-
tomate the Nintendo version as a tribute to litigation.
Unsurprisingly, playfun is awful at this game. Tetris
has several screens of menus, where the player can select
between different modes and theme musics and stuff like
that. As an amusing prelude to this disaster in tetro-
mino stacking, playfun keeps entering the menu and

���

Figure 14: The second dinosaur colored by the playfun
algorithm. There’s no way to go wrong in this game;
any possible coloring is oh so right.

exiting back to the title screen rapidly, taking several
seconds to even start the game. (Like in Bubble Bobble,
this means that the start button is among the motifs.)
Although the piece dropping looks more or less natural
(but it’s hard to not be, as the game drops the pieces
for you), the placement is idiotic—worse than random.
This may be because placing a piece gives you a small
amount of points, which probably looks like progress
(Figure 15), so there is incentive to stack the pieces as
soon as possible rather than pack them in. As the screen
fills, there’s a tiny amount of tetris-like gameplay, prob-
ably as the end of the game becomes visible in some
of the futures. The end result is awful and playfun

makes zero lines and certainly no Tetrises (Figure 16).
The only cleverness is pausing the game right before
the next piece causes the game to be over, and leaving
it paused. Truly, the only winning move is not to play.

6 Future Work

It is famous last words, but I actually intend to keep
working on this project. Because of SIGBOVIK crunch
pressure (and discovering some bugs as I was writing
the paper) the approach got much better very recently
and I’m mostly limited by CPU hours until conference.
It’s today in a state where whenever I run it on a new
game I see something delightful. Even just running it on
more of the NES classics is worthwhile. However, I have

Figure 15: The joyful noise of objective functions
learned for Tetris. The first fifth of the movie is navi-
gating menus and looks very different from the remain-
der. There appear to be some frame counters identified,
which make perfect smooth progress throughout the en-
tire movie. I believe discontinuities correspond to plac-
ing of pieces; some objectives monotonically increase at
these points (and are noisy in-between), suggesting that
they incorporate the score.

lots of ideas about how to extend the technique, either
to make it more beautiful or to make it work better:

Parameter reduction. I’ve already pointed out the
places where there are mysterious constants in the code.
Although the fact that the same constants work on
many different games without tuning is some solace, it
would really be nicer to remove these. One of the hard-
est to remove is the length of the futures explored. And
I like a challenge!

Unsupervised learning. Speaking of challenge, it
might be possible for playfun to teach itself, by start-
ing with no objective functions and playing randomly
to see what bytes it can make go up, then fitting lexico-
graphic orderings to the memories and repeating. The
beginnings of games (which include RAM intialization,
title screens, and menus) continue to vex this kind of
work, unfortunately.

Generalized orderings. Right now, lexicographic
orderings are limited to vectors of unsigned bytes that
get larger. Many games treat bytes as signed (I believe
this is true of Mario’s velocity, for example). For other
bytes, like one representing your enemy’s health (c.f.
Karate Kid), winning means making the byte go down,
not up. It is possible to generalize the lexicographic or-
derings we generate to a vector of (Li, <i) pairs, where

���

Figure 16: Would you hire this construction company?
Death is imminent, so playfun pauses the game shortly
after this and then doesn’t unpause it.

<i tells us how to compare the bytes at that location.
Things to try would be two’s-complement signed com-
parison, or unsigned greater-than. I think this is a great
avenue; the dangers are overfitting (now most short se-
quences can be explained in one way or another) and
being too fancy.

Input models. I’m unsatisfied with the motif ap-
proach. As mentioned earlier, the obvious thing to try
instead is a Markov model, which would probably be
simpler and would allow re-weighting from inputs re-
gardless of what we concocted while playing (the current
version can only reweight the human motifs, not learn
new sequences discovered while running). I would also
like some solution to the start button problem—if it is
among the motifs, it often shows up in gameplay in an-
noying ways. I don’t feel good about simply blacklisting
it, however. In Bubble Bobble, start appears to be used
to burn away futures when all of them are bad. Maybe
a simple improvement would be to allow the inner loop
of playfun to skip the turn (empty next sequence) in
order to simulate this.

Better backtracking. Backtracking is a powerful
idea, and there’s lots more to do here. The fixed-size
backtracking window is disappointing since it’s a pa-
rameter, and doesn’t even seem right for most games. It
would make sense to do something like lengthen the win-
dow until the improvability starts dropping; basically,

find the amount of recent past that’s comparable to ran-
dom play, and try improving that. Moreover, it should
be possible to re-backtrack, since some parts of the game
are harder than others. Ideally, when Mario has so few
options that he contemplates suicide, he should be back-
tracking over and over and farther and farther until he
finds a future that’s good. This is the power of time
travel. Use it, man.

Efficiency in search Quality is directly related to
the number of states searched. Some sequences are eas-
ier to search than others, because they share a prefix
with something we’ve already done and can be cached.
It would be worth looking into algorithms that explic-
itly take into account the cost of branching, so that we
explore some tree (of futures, for example) rather than
disjoint linear futures. The effective number of futures
explored could be much higher for the same CPU.

Multiple players, multiple games. Other than the
particulars of the way it’s built (vector<uint8> every-
where), there’s no reason why the technique is limited
to a single player’s input. In a game like Bubble Bobble
or Contra the two players can collaborate in interesting
ways, and planning both simultaneously would proba-
bly lead to occasional awesome results. For example, in
Contra, it might be that one player is shooting enemies
for the other player, the bullets arriving from across the
screen just in time to save him as he blithely jumps
into danger. Another clever feat from the Tool Assisted
Speedrun community is a sequence of inputs that beats
multiple different games simultaneously. For example,
human geniuses used tools to beat Mega Man (Mega
Men?) 3, 4, 5, and 6 all at the same time using the
exact same input sequence sent to all four games.[2] I
think the algorithms in this paper apply directly—it’s
just a matter of multiplexing the inputs to each of the
games, and then taking the appropriate operation (min,
max, sum) of their objective functions to produce a final
objective function. The main obstacle is the architec-
ture of the underlying emulator, which can only load
one game into its global variables at once.

7 Conclusion

In this paper I showed how lexicographic orderings and
time travel can be used to automate classic video games.
The approach uses an amusingly simple and mathemati-
cally elegant model to learn what constitutes “winning”
according to a human player’s inputs. It then uses hun-
dreds of CPU hours to search different input sequences

���

that seem to “win”, inspecting only the RAM of the
simulated game, ignoring any of the human outputs like
video and sound. The technique works great on some
games, getting farther into the game than the human’s
inputs did, and produces novel gameplay (for example,
bug exploitation and super-human daredevil timing).
On other games, it is garbage, but on a scale of re-
cycling symbol 1 to recycling symbol 7, it is at least
hilarious garbage.

References

[1] adelikat et al. FCEUX, the all in one NES/Famicom
emulator. http://fceux.com/.

[2] Baxter and AngerFist. NES Mega Man 3, 4, 5 & 6.
http://tasvideos.org/871M.html.

[3] Michael Burrows and David Wheeler. A block sort-
ing lossless data compression algorithm. Technical
Report Technical Report 124, Digital Equipment
Corporation, 1994.

[4] gpike and jyrki. The CityHash family of hash
functions, 2011. https://code.google.com/p/

cityhash/.

[5] kenton, jasonh, temporal, liujisi, wenboz, and xi-
aofeng. Protocol buffers, 2013. https://code.

google.com/p/protobuf/.

[6] Sam Latinga, Roy Wood, and Masahiro Minami.
SDL net 1.2, 2012. http://www.libsdl.org/

projects/SDL_net/.

[7] Vargomax V. Vargomax. Generalized Super Mario
Bros. is NP-complete. SIGBOVIK, pages 87–88,
April 2007.

���

