
26

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2015

ISSN 2155-0166

April 1, 2015

Copyright is maintained by the individual authors, though obviously this all gets posted to the

Internet and stuff, because it’s 2015.

Permission to make digital or hard copies of portions of this work for personal use is granted;

permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems

difficult.

Additional copies of this work may be ordered from Lulu; refer to http://sigbovik.org for
details.

SIGBOVIK 2015
Message from the Organizing Committee

You hold in your hand the proceedings for SIGBOVIK 2015. Or, more likely, you’re looking at

them on a screen because you’re too cheap to actually buy the proceedings. Either way, we thank

you for your interest, but we thank you considerably more if you’ve demonstrated your interest

by giving us money. As is traditional, we begin the proceedings with a message that nobody will

read, but which must nonetheless be included because we don’t want to give any of our authors the

satisfaction of having their paper start on page 1.

We are proud to announce that SIGBOVIK has experienced a surge in interest in recent years.

As can be seen in Figure 1, the number of submissions grew exponentially1 from 2012 to 2014.

We don’t consider the number of submissions for 2015 here, because this message comes at the

beginning of the proceedings and we wouldn’t want to spoil the surprise. More people have been

giving presentations, and attendance has been thriving. Of course, we don’t keep numeric records

of these facts, because that requires organizing, and does the SIGBOVIK organizing committee

look like some group of people who are interested in organizing things?

Figure 1: y = 2 × 1036e−0.04x, where y is the number of submissions and x is the year. Yeah, this
graph was made in Excel. So what?

1Exponential decay is just exponential growth with a negative exponent, right?

Because of these vast leaps in size, SIGBOVIK has reached that point in every young conference’s

life where we must consider splitting the talks into tracks to save time. Because time is money and

all that. However, we at SIGBOVIK feel strongly that all attendees should be able to experience

the full range of exciting research that SIGBOVIK has to offer, and so it is with great pleasure that

we announce several proposals for creating two parallel tracks.

Two concurrent presentations. Two presenters stand at opposite sides of the front of the room

and give talks concurrently. Audience members can sit closer to whichever presenter interests

them more. For example, an audience member could give 25% of his or her attention to Presenter

A and 75% to Presenter B by sitting one-quarter of the way to Presenter A’s side of the room.

Both presenters will display their slides, because the auditorium conveniently has two screens at

the front of the room. We’re not sure if they can show video from two different laptops, but this

seems like a technical detail.

Two concurrent presentations - in 3D! As above, two presenters stand at opposite sides of the

front of the room and give talks concurrently. However, we leverage advanced 3D technology

to ensure that all audience members can fully appreciate both talks. Each audience member is

given a pair of colored 3D glasses. One presenter wears red. One presenter wears blue. Their

slides are colored accordingly and overlayed on one screen. The audience members’ brains will

correctly interleave the two presentations to form a coherent narrative. If the two presentations are

in different fields, this probably opens us up to all kinds of funding for interdisciplinary research.

We should look into that.

Timeslicing. Did you know that before your desktop had eight cores, it had only one, but you

could still run multiple programs? This was accomplished through timeslicing. In the same way,
two presenters can give talks concurrently by alternating slides. If this granularity is too high

to achieve reasonable latency, the presenters could try alternating sentences, words, syllables or

phonemes. The possibilities are endless.

Question-and-answer optimization. Frequent attendees of academic talks will notice that pre-

senters spend approximately half of their total time answering questions, either during the desig-

nated question-and-answer period at the end of the talk, or when interrupted during the talk. A

further observation is that attendees of talks are generally interested in asking questions or listen-

ing to the talk, but not both. We take advantage of these observations by having Presenter A give

a talk and then answer questions, as usual, and Presenter B answer questions first and then give

the talk. This may seem strange, but is really no different than normal because questions typically

have little or no relation to what was discussed in the talk. This format has the benefit that those

who wish only to ask questions can spend the entire session doing so, and those who wish only to

hear talks can spend the entire session doing so. Additionally, both presenters are able to give their

talks uninterrupted because anyone who would interrupt with questions is busy asking questions

of the other presenter.

Of course, there is no reason to limit ourselves to two tracks, but the above solutions clearly

generalize to n-track conferences, in the standard way. We hope to roll out one or more of these
exciting developments for SIGBOVIK 2016 (not SIGBOVIK 2015, because we’re lazy like that).

And, with that, onto the proceedings!

inDRM: copy control with a personal touch
Miguel Á. Lechón∗

April 1, 2015

You say “I’ll just make a copy for me and
a friend”, but he’ll make one and she’ll make
one and when will it end?

Don’t copy that floppy
MC Double Def DP[1]

Abstract
inDRM is a digital rights management scheme.
The goal of inDRM is ensuring that a small
amount of human reflection accompanies the
process of creating and distributing each new
copy of a given piece of software. It is partic-
ularly well suited for developers that expect
lots of passion but little money from their
users, such as independent game developers.
Noteworthy properties of inDRM are its:

• Broken by Design design.
• P2P activation key generation.
• Distribution history record keeping.

Reference implementations and usage ex-
amples are available here1.

∗e-mail: miguel.lechon+inDRM@gmail.com
1https://github.com/debiatan/inDRM

1 Motivation
1.1 A brief history lesson
Home taping killed music thirty years ago due
to music being distributed as passive, readily
cloneable data. Too little was done to rem-
edy this, and too late[2]. Computer software,
in contrast, and by its own nature, needs to
be active to fulfill its intended purpose, so,
through the use of DRM, video games can
choose to be as passive[3], aggressive[4] or
passive-aggressive[5] as they so desire. This
is the main reason why we have games, but
not music, today.

1.2 Danger lies ahead
The current dominant threat to the computer
game industry is not so much economical as
it is ecological. Shastri, Morrison and White
provide a concise explanation in their recent
discussion[6]:

It’s a total SNAFU! Adults buy all
kinds of games but never play them.
Kids have time to play but behave
like monomaniacs. . .Minecraft this
or LoL that, day in, day out!

Soon we will all realize there are no
gamers left. And when the bubble
bursts, the reeking corpses of un-
played Steam libraries will wash this
industry away.

Indeed, according to undisclosed sources
at Valve, the average library backlog (bought
but unplayed games) amounts to 83% of the
total number of titles each user owns[7].

1.3 Danger knocks at the door
The vast majority of game developers do not
see financial return as an end, but as a way of
measuring the engagement of players to their
games. However, in today’s prosperous eco-
nomical climate, money is essentially thrown
at the feet of game developers for no appar-
ent reason, tricking them into thinking they
are succeeding when, in all likelihood, no one
is playing their creations.
A recent example is the case of the Hand-

made Hero project[8], where one programmer
with no previous history of ever completing a
commercial video game announced his plans
of working five hours per week on a yet-to-be-
started title. He successfully collected thou-
sands of preorders during the course of the
following weeks.
Will this summer last much longer? Won’t

some brilliant academic mind devise a clever
way of avoiding this impending disaster?
How can cautious game developers gauge the
real commitment of their user base when all
signs indicate they are doing a splendid job?
The answers to these questions are no, yes

and read on.

1.4 Fear no more
The solution, of course, lies in the repurpos-
ing of the industry’s proven old savior, DRM.
As long as money keeps growing on the

trees of developer’s backyards, the amount
of game copies sold will be an inaccurate
measure of consumer acceptance. Instead, I
propose making players spend an ultimately
much more valuable resource than money:
their time. In order to achieve this, and as
a condition to unlock the game, the user will
be forced to engage in a short social exchange
with either the creator of the game or some
other fellow player.
By slightly inconveniencing potential

clients, creators can expect to gain a clearer
understanding of the appeal of their games
and end up with a much more committed,
albeit smaller, user base.

2 Cryptological interlude
inDRM’s strength rests on:

• the solid foundation of the MD5/4 cryp-
tographic hash function

• the RSA public key cryptosystem signing
procedure [10] with a key length of 32
bits

• the identification of computers via the
MAC addresses of their primary network
interfaces.

This section consists of a rather in-depth
review of the first two algorithms.

2.1 MD5/4
MD5[9] takes an arbitrary string of charac-
ters, passes it through a deterministic blender
and produces an unnecessarily long 128-bit
value.
MD5/4 takes that value, chops it into four

32-bit pieces and XORs them together to pro-
duce a more digestible 32-bit digest.

2.2 RSA signatures
The RSA signature procedure is a popular
party trick from the late 1970s, where one
person comes up with three numbers n, d and
e that satisfy the following property:
(xd)e ≡ x (mod n), ∀x ∈ Z

2

That person then makes n and e public,
spends a few minutes teaching modular expo-
nentiation to the crowd and claims to possess
the ability to:

• Turn any message into a number x (using
a scheme similar to MD5/4)

• Produce a number y that depends on x
and that acts as that person’s signature
of the message, fact which can be verified
by checking that: ye ≡ x (mod n)

Of course, behind the scenes, the enter-
tainer obtains y by raising x to the dth power,
dividing the result by n and taking y to be the
remainder of that division.
The process of finding the three initial

numbers is demonstrated in [11] and can be
2 Which translates into Pythonist parlance as:

(pow(pow(x,d,n),e,n) == x) == True
for any integer value of x

easily accomplished today with the help from
the time-tested software package openssl[12]
by issuing the following command in any
POSIX-compliant operating system:
openssl genrsa 32|openssl rsa -text3

Looking at its output, the modulus field is
equivalent to our n, publicExponent denotes
e and privateExponent indicates d.

3 Guided tour
Any person in possession of an unlocked in-
stance of a game protected by inDRM can un-
lock copies for other potential players, as long
as those copies descend, directly or indirectly,
from that same unlocked instance.
There are several distinct phases in the dis-

tribution of a game protected by inDRM:

• Author A of a game generates a root ac-
tivation key file and distributes it along
with the game

• Potential player P obtains the game, tries
to run it and is invited by the software to
generate a request file and send it back
to author A as a precondition for playing

• Author A receives the request file, throws
a small party and generates a response
file for player P that becomes a valid ac-
tivation key file

• Player P plays the game, finds it worth-
while and hands a copy to friend F

3It is fashionable to use 2048 instead of 32, prob-
ably in reference to the homonymous video game[13]

• Friend F tries to run the game and is
invited by the software to generate a re-
quest file and send it back to either A or P
as a precondition for playing. F chooses
to contact P

• P generates a response file for friend F,
by virtue of possessing a valid activation
key file belonging to the same key chain
that reached F

• . . .

The rest of this section reviews the techni-
cal details behind the generation of key files.

3.1 Root activation key file
The creator of the game generates a root ac-
tivation key file and distributes it with every
copy of the game. In and of itself, that key
file only allows the game to be played on the
developer’s computer. However, it provides
the basis for the generation of key requests
from potential players.
Here is an example of an inDRM root acti-

vation key file:

========== inDRM key file ===========
game: Adventures in inDRMland
=====================================
nick: debiatan
location: Barcelona
date: 2015/04/01
notes: Enjoy!
mac_salt: 1e6c40ea
mac_hash: 76f0da12
hash: c738b172
signature: d38cc9a

Inside key files, lines starting with an equal
sign are ignored. The rest are composed of a
tag, followed by a semicolon and a value field.
The tags and their associated functions are
these:

game: Title of the game
nick: Author’s name or nickname
location: Author’s place of residence
date: Date of creation of the key file (in
yyyy/mm/dd format)
notes: Notes from the author
mac_salt: Random 32-bit hex number
mac_hash: MD5/4 hash of the concate-
nation of mac_salt and the hexadeci-
mal representation of the MAC address
of the primary network interface of the
computer generating the key file
hash: MD5/4 hash of the concatenation
of: the preceding signature in the key
chain (assumed to be “0” in case of the
master key file), game, nick, location,
date, notes, mac_salt and mac_hash
signature: RSA signature of hash
(computed as (hashd mod n), where d
and n have been generated along with e
as discussed in section 2.2).

For the particular example used in this sec-
tion, the values of the cryptographic param-
eters are:

• n (modulus): 3333098473
• e (public exponent): 65537
• d (private exponent): 939472245

These values are to be embedded in the
inDRM routines present in the game. The
pair (e, n) will be used as an RSA public
key in order to check signatures present in-
side key files. The pair (d, n) will allow a
registered copy of the game to sign key file
requests from new potential players through
an in-game menu option labeled to that ef-
fect.

3.2 Activation key file
validation

Every time a piece of software guarded by
inDRM is run it reads the activation key file
and checks that:
• the value of the hash field is correct (by
recomputing it using the tag values that
precede it)

• the value of the signature field is cor-
rect (by ensuring that
signaturee mod n = hash)

If these two conditions are met, the pri-
mary MAC address of the machine is checked
to see if it satisfies:

MD5
4 (mac_salti +MAC) = mac_hashi

(where the ‘+’ sign indicates concatenation
of strings) for any mac_salti/mac_hashi pair
present in the file. If it does, the game is
allowed to run. Otherwise, the user is invited
to generate a request file.

3.3 Request file generation
An invitation to generate a request file will
essentially convey a message similar to this
one:

*** Last MAC address on key file does
not belong to this computer ***

You won’t be able to play this game
unless you convince another player to
generate a key for you.

Let’s build a request file...

Please provide the following data
(or press ’enter’ to skip):
Name (or nickname): _
Location (place of residence): _
Notes (message to future players): _

After providing (or failing to provide) the
three pieces of information, inDRM collects the
date and MAC address of the system, gener-
ates the request file and tells the user that:

A request file has been generated here:
*** /home/ ... /request.txt ***

In order to finish the registration
process, send that file back to
whoever shared the game with you.
That person will be able to unlock
your copy.

Think twice before sharing this game
with other people. If they ever try
playing it, they might come back
asking you to register their copies.

The request file consists of a copy of the
original key file distributed with the game
with an extra section appended at the end.
Imagining that the original key was the one
presented back in section 3.1 and the user
provided “miguel”, “barcelona” and “this

sucks” as values for name, location and
notes, respectively, the resulting extra sec-
tion could look like:

nick: miguel
location: barcelona
date: 2015/04/01
notes: this sucks
mac_salt: 95be1f47
mac_hash: 6051a20a
hash: 1f495ce2
signature: NO SIGNATURE YET

In order to run the game, the potential
player will then send the request file up the
distribution chain for it to be signed.

3.4 Response file generation
The example activation chain we have de-
scribed consists of only the original author
of the software and its first user. The request
file will then be necessarily sent to the au-
thor, who will execute a registered copy of
the game and select the option that allows to
sign requests. That routine will check that:

• the values of all hash fields are correct
(by recomputing them using the values
of fields preceding it)

• the values of all signature fields, except
for the last one, are correct (by ensuring
that (signaturee mod n = hash))

• the primary MAC address of the com-
puter satisfies:
MD5

4 (mac_salti + MAC) = mac_hashi

for some mac_salti/mac_hashi pair in
the request file.

If all three conditions are met, the last
signature field of the request file will be
completed with the help of the private ex-
ponent d and the modulus n:

signature = hashd mod n

In our example, this would mean modifying
the last signature of the request file to read:

signature: 9bc727d0

The resulting file will then be sent back to
the potential player to be used in place of
the original activation key file. The potential
player will then stop being just potential and
start a new life as a real player.

4 Properties
Improving security typically means degrad-
ing usability. Providentially, both effects are
intended consequences of the use of inDRM.
There are several other desired properties

that have gone into the design of the inDRM
copy control scheme. This section discusses
them briefly.

4.1 Broken by Design design
If we were to depict the concept of security
as a one-dimensional horizontal segment de-
limited on the left by the word insecure and
on the right by the word secure, inDRM would
lie definitely to the left, in a place probably
labeled as cryptographically annoying. Sadly,
space limitations preclude even a cursory ex-
ploration of all the security flaws exhibited
by inDRM.

4.2 P2P key generation
Players of games protected by inDRM can rest
assured that they will be able to enjoy them
for as long as they are interested in doing so.
The absence of network authentication and
the distributed nature of the key generation
process guarantee that.
Moreover, as a side benefit of the dis-

tributed nature of the key generation scheme,
players might derive some sense of belong-
ing to a community by simple inspection
of the contents of their personal key files.
Intensely imaginative players, of the kind
that take pleasure in trading Steam inventory
items, may even experience inDRM’s compul-
sory chaining of signatures as a tradition that
makes them part of a lineage.

4.3 Lack of attractive as a
cracking target

All DRM schemes are eventually subverted,
so one should not ask if but when will inDRM
be broken. I suspect that it will not happen
any time soon for mainly two reasons:

• Breaking inDRM poses no challenge, so no
one can take pride on that endeavor

• The only benefit to be derived from
breaking inDRM is the avoidance of a
short social interaction

4.4 Distribution history record
keeping

Key files have potential uses other than game
distribution control. For instance, the com-

bined notes sections of a key can be used as
a simple guestbook or, perish the thought, a
space for advertisements.
Another more elaborate use requires us to

picture the set of activation key files associ-
ated to a particular game as a tree, its leaf
key files being the ones that carry the most
information. Getting hold of a sizeable per-
centage of those files by some means4, would
facilitate the identification of the principal
hubs in the game’s distribution network.

4.5 Simplicity
MD5 is straightforward to program[14]. The
improvements that MD5/4 introduces come
at the cost of three extra XOR instructions.
Implementing the standard RSA algorithm

would require working with arbitrarily long
integers, but the 32-bit version of it does not
impose that hardship on game developers.
Two additional benefits of working only with
32-bit values are that key files become smaller
in size and that they fit inside the two-column
layout of this article.

4.6 Involvement of players
In order to acquire a valid activation key file,
the potential player must secure the collab-
oration of another player. After implicating
that other person, the new player may feel
pressured to give the game a proper try and
avoid dropping it after just a few minutes of
play.

4such as asking nicely or offering players extra
game content in exchange for their keys

4.7 Future-proof architecture
As long as one registered copy of the game re-
mains, it will continue to be redistributable
and playable. Even if no registered copy re-
mains and even if the game binary proves dif-
ficult to crack, bruteforcing the signature of
a request file requires just the testing of the
set of 232 possible signatures.

5 Conclusion and final
remarks

Game developers do not need protection from
software pirates; they need instead to be
guarded from the uncaring capricious money-
throwing player hordes that endanger their
profession. By choosing to distribute games
guarded by inDRM, they are not only decid-
ing to acquire a much more mature following,
but are also telling the video game commu-
nity that they care.
For an up-to-date list of games that use

inDRM, check:
http://blog.debiatan.net/inDRM.html

References
[1] MC Double Def Disk Protector, Don’t

copy that floppy5, 1992

[2] Sony BMG copy protection rootkit scan-
dal6, Wikipedia

5https://www.youtube.com/watch?v=
up863eQKGUI

6https://en.wikipedia.org/wiki/Sony_BMG_
copy_protection_rootkit_scandal

[3] Good Old Games7

[4] Always-on DRM8, Wikipedia

[5] DRM – Software tampering9, Wikipedia

[6] S. Shastri, R. T. Morrison, and X. White,
More games, less time. Journal of Bad
Omens, vol. 35, pp. 75-80, Dec. 2012.

[7] “Undisclosed” means “undisclosed”.

[8] Handmade Hero10

[9] R. Rivest, The MD5 message-digest algo-
rithm, RFC 1321, April 1992.

[10] R. Rivest, A. Shamir an L. Adleman, A
Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Commu-
nications of the ACM 21 (2): 120–126.
February 1978.

[11] RSA encryption and decryption, a
worked example11, Wikipedia

[12] OpenSSL12, Wikipedia

[13] 204813, Wikipedia

[14] MD5 pseudocode14, Wikipedia

7http://www.gog.com/
8https://en.wikipedia.org/wiki/Always-on_

DRM
9https://en.wikipedia.org/wiki/Digital_

rights_management#Software_tampering
10https://handmadehero.org/
11https://en.wikipedia.org/wiki/RSA_

(cryptosystem)#A_worked_example
12https://www.openssl.org/
13https://en.wikipedia.org/wiki/2048_

(video_game)
14https://en.wikipedia.org/wiki/MD5#

Pseudocode

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2015 Paper Review
Paper 1: inDRM: copy control with a personal
touch

Chris Martens
Rating: 2 (destroy all games)
Confidence: 4/4

The copy protection scheme described in this paper ostensibly poses a solution to a threat to the

video games industry. As such, I cannot sanction it as a good idea. Also, the paper is eight pages

long and had a lot of boring stuff about crypto in it.

On the plus side, the “Broken by Design” design seems like a useful feature.

A Hand-Held Device for User-in-the-loop Prin-ting

James McCann∗

TCHOW
Notreal Author

WeAreWe University

Figure 1: Our handheld hardcopy output device (left) shares many of the capabilities of a commerially produced printer
(right), but in a much more convenient form-factor.

Abstract

Thanks to the proliferation of the ARPANET, computers are

used every day by hundreds of people around the world to

access a wealth of information. However, until recently, this

information could only be applied in domains that could be

brought within reach of a computer terminal, or by operators

with extensive memory training.

With the advent of the printer, this has begun to change.
Computer operators now are able to send digital information

to a machine which converts it into hardcopy, a physical rep-
resentation constructed from marks on paper. This hardcopy

information can then be transported to application locations

distant from any computer access terminal and applied.

While this process is certainly more user-friendly than the al-

ternatives of relying on memory or movement of information

application domains, it remains cumbersome, expensive, and

inaccessible. We propose a hand-held device which can pro-

duce informational markings on paper, much like a printer.

Hardcopy produced with our device has similar information

content to that produced with a conventional printer, but at a

lower price.

Further, we describe user-in-the-loop printing, a process en-
abled by our device, which allows computer operators to fil-

ter and transform information as it flows from the computer

to the hardcopy. These transformations can lead to ink sav-

ings through domain-tailoring. We also demonstrate how our

device can allow computer operators to increase the informa-

tion output of existing hardcopy – either from a conventional

∗e-mail: ix@tchow.com

printer or our own device – through a process we term infor-
mation overlay.

CR Categories: B.5.2.s [Rock]: Rock—Lobster

1 Introduction

ARPANET [Davies et al. 1967] is an inter-network of com-

puters, which are able to exchange information between

themselves using digital network signalling. Estimates vary,

but most experts [Callahan and Hodgman 1971] agree that

between tens and hundreds of people use the ARPANET ev-

ery week, transmitting – in aggregate – more than 400 kilo-
bytes∗ of data during the average month.

However, until recently [2014], this information was con-

fined to locations with direct ARPANET access, such as

“ARPANET Cafes,” or to those locations to which computer

operators with exceptional memory skills could travel, such

as “Cafes.” However, with the advent of printers, this restric-
tion has been relaxed.

In this paper, we extend the notion of printing with a hand-
held hardcopy output device. Our device provides many

of the same output capabilities of a full-scale printer, with-
out requiring a movable type department or access to steam

power (a significant cost savings). Further, our handheld de-

vice enables user-in-the-loop prin-ting, through which the
computer operator can actually transform the information

which they record.

∗A kilobyte is unit of information equal to the storage capacity of 64
kilograms of quarters (practitioners often summarize this by saying there
are “sixteen bits in one byte”.)

Figure 2: A labeled diagram of our hardcopy output device. For more information see the text.

2 Our Tool

A prototype of our hardcopy output device is shown in Fig-

ure 1, with a schematic diagram shown in Figure 2. We

briefly explain the construction here. Curious readers are

invited to submit an NDA request to the second author to be

granted access to further details.

The operative end of the device is the rolling tip, which dis-
tributes ink from the fluid reservoir. In non-printing situa-
tions, the rolling tip is protected by the tip cover, which is
also is the anchor point for the adjustable fin – which we be-
lieve contributes to the overall aerodynamics of the device.

The fluid resevoir is surrounded by the cylinder hand inter-
face, which – as the name suggests – is the control surface
through which the device is actuated during printing opera-

tions.

Finally, the neck strap is an ergonomic addition aimed at mit-
igating hand fatigue during long printing sessions.

3 Basic Operation

During a basic printing session, the operator first secures the

neck strap to the device and adjusts it for optimal comfort.

The operator then transfers the tip cover from the rolling tip

end of the device to the tip cover storage location on the non-

tip end of the cylinder hand interface. Next, the operator se-

cures a piece of printing substrate to their video ARPANET

computer terminal device, and – controlling the rolling tip’s

position with the cylinder hand interface – directs our device

to move along the printing substrate in the patterns visible

through it.

This has the effect of creating ink deposits on the substrate,

registered to the ARPANET information the operator wishes

to capture.

Though this process may sound complicated, we find that

most operators become proficient withing the first 1-2 weeks

of incarceration in our specialized training camp, at which

point they are allowed to return home.

Figure 3: User-in-the-loop prin-ting allows users to ex-
cerpt just the information they require from a document (sin-
ister), unlike conventional printing, which reproduces the en-
tire text (dexter).

4 User-In-The-Loop Prin-ting

Our hardcopy output has many advantages over a commer-

cial printer. One large advantage is that – because the user is

controlling the device – they are able to transform the infor-

mation that is recorded. We call this process user-in-the-loop
prin-ting.

In this section, we summarize the prin-ting actions taken by
a group of computer operators using our device. We re-

cruited these operators through an ARPANET posting, and

in no way threatened or cajoled them into participating. We

list only the most common operations, since we think that

a more detailed list is probably worth saving for a second

publication.

4.1 Condensation

One of the most common transformations we observed was

the removal of extraneous textual information. This informa-

tion removal allowed users to speed up their hardcopy pro-

duction process by omitting all but the most pertinent details.

Often this would involve the elimination of entire paragraphs

and sections, save for a few key equations or phrases. This

is a huge material and time savings that cannot be accom-

plished by commercial printers.

4.2 Abstraction

Abstraction is the graphical analogue of condensation. Of-

ten, when tasked with producing hardcopy of a particular im-

age, operators would remove much of the detail from the im-

age; reproducing an approximation with only a few strokes.

As with condensation, we found that the level of detail repro-

duced was often task-dependent. For instance, when produc-

ing hardcopy of a map, users were likely to carefully repro-

duce streets near their intended journey or destination, and

simplify or elide streets elsewhere.

4.3 Spelling Alteration

During the course of hardcopy production, we often saw

users change the spelling of words. We believe that this is

a positive indication that our handheld printing device can

contribute to the evolution of our living language.

4.4 Incremental Refinement

Finally, several of our participants used an unexpected, but

exceedingly efficient, printing strategy, wherein a document

produced on a traditional printer was refined using our hard-

copy output device.

Though this hybrid output scenario was unexpected, we

found that its unexpected unexpectedness was not something

we expected, but we would not expect that follow-up work

in this unexpected direction would be unfruitful. So such

follow-on work shouldn’t be unexpected, unlike this unex-

pected behavior, which wasn’t something that was not unex-

pected.

5 Limitations

Our handheld printing device does have a few limitations, as

compared to a traditional printer. But none worth mention-

ing.

6 Conclusion

In this paper, we described a revolutionary device that en-

ables computer operators to produce hardcopy without the

need for an expensive printer. In testing, we observed that

operators used our device not just to produce exact copies

of documents, but actually significantly transformed those

copes (p < 2.0). We termed these transformations user-in-
the-loop prin-ting.

We have only tested our hand-held printing device on flat

surfaces; however, we are excited about the possibility of

recording information on non-flat surfaces – a process we

term “3D printing”. We believe user-in-the-loop 3D prin-
ting has the potential to revolutionize the decorative arts.

References

2014. A recent year.

CALLAHAN, E., AND HODGMAN, J. F., 1971. John Hodg-

man.

DAVIES, D. W., BARTLETT, K. A., SCANTLEBURY, R. A.,

AND WILKINSON, P. T. 1967. A digital communication

network for computers giving rapid response at remote ter-

minals. In Proceedings of the First ACM Symposium on
Operating System Principles, ACM, New York, NY, USA,
SOSP ’67, 2.1–2.17.

A Even Prime Numbers

peven = {2} (1)

B Integral Roots of Unity

{n | n ∈ Z, n2 = 1} = {−1, 1} (2)

C Composite Prime Numbers

∅ (3)

Artisanal type theory

Carlo Angiuli

April 1, 2015

1 A brief history of some things

Food was invented by Mesopotamians some 5,000 years ago, and has been eaten
ever since. Logic was invented in the Mediterranean by ancient Greeks, including
Aristotle and a mortal man [1] named Socrates. It lives on as an important
course in pre-law curricula across the United States.

Modern times require more modern logics. Computer programming is closely
tied to intuitionistic logic, in which proofs of a proposition correspond directly
to algorithms. Intuitionistic logic, often in the form of type theory, is taught to
several American computer scientists annually.

Until the past several centuries, food and logic were primarily manufactured
by artisans, who trained apprentices in the arts of, respectively, proofing and
proving. The Industrial Revolution gave rise to machines able to produce food
and textiles much faster than artisans ever could. The digital revolution, like-
wise, has turned ‘computer’ from a human job into a cheap, ubiquitous machine
capable of multiple calculations per second.

Despite the overwhelming success of mass-produced food, some consumers
want to revisit food’s roots as a product sustainably and ethically crafted by
local artisans using traditional techniques. The result, known as artisanal food,
has taken off in popularity in the past few years [2, 4].

2 Algorithms with the human touch

So too should computer scientists return to the roots of computation—slow,
error-prone calculations performed by humans. After all, despite the close re-
lationship between computer programs and type theory [3], or indeed, between
computer programs and algorithms, there is no need to involve computers in
deeply human tasks like sorting lists, routing packets, or decoding MPEG-4
video streams.

We advocate a more personal approach to computation, called artisanal
type theory. Artisanal type theory has the same rules as ordinary type theory,
except that all terms and typing derivations must be handwritten. Closed, well-
typed terms evaluate to values of the same type, accompanied by a certificate
of authenticity that a human performed that evaluation.

Since each term was lovingly handcrafted and normalized, these artisanally-
performed beta-reductions provide a more meaningful explanation of type the-
ory than traditional computer-based interpreters. Using artisanal type theory
demonstrates a firm commitment to locally-grown, sound, and complete reason-
ing systems.

3 Examples

Shallow learning. We can implement artificial intelligence using human in-
telligence. Given the training data that false is desired but true is not, one
can manually build a classifier for booleans. Such a classifier can then be run on
a boolean to determine whether or not it is in the desired set. In the example
below, we run the classifier on false.

Fairly quick sorting. Artisanal computation has some advantages over com-
puter programming—namely, humans can perform some computations without
needing a precise algorithm. In this example, we sort a list of integers without
the need to specify a particular sorting algorithm.

Small-batch jobs. We can also write scripts which artisanally perform repet-
itive computing tasks such as renaming a large number of files, accessing se-
quential URLs, etc. Doing so requires adding primitives for I/O, file system
access, and so forth. As discussed above, it is unnecessary to actually imple-
ment these primitives, because the human runtime already supports these tasks
via a computer’s traditional user interface. Furthermore, unlike in traditional
scripting languages, it is easy to extend this with physical-world primitives such
as eatLunch, writeHandwrittenThankYouNote, and sleep.

4 Conclusion

We hope artisanal type theory will appeal to computer scientists and mathe-
maticians who appreciate algorithms but believe computers themselves are quite
inconvenient at times. Unlike ordinary type theory, it directly expresses compu-
tations as if people, but not computers, matter. Therefore, we are hopeful that
artisanal type theory will be a useful foundation for the field of human science.

References

[1] Aristotle. The Organon. 40 B.C. Ed. Andronicus of Rhodes.

[2] Cope, S. Small Batch: Pickles, Cheese, Chocolate, Spirits, and the Return
of Artisanal Foods. Rowman & Littlefield Publishers, Inc., 2014.

[3] Martin-Löf, P. Constructive mathematics and computer programming.
In Proc. Of a Discussion Meeting of the Royal Society of London on Mathe-
matical Logic and Programming Languages (Upper Saddle River, NJ, USA,
1985), Prentice-Hall, Inc., pp. 167–184.

[4] Schwaner-Albright, O. Brooklyn’s new culinary movement. http://

www.nytimes.com/2009/02/25/dining/25brooklyn.html, Feb. 2009.

ˆ

<
� ← · ˆ

, �

← �

′

< ′

∈

∈

≤ ≤
, ...,

, ⊆

⊆ ∈
| ∈
�= ∅ ∈

ε ∈
ε ε

∈

∈ �∈

Red i removal with artificial retinal networks

Dr. Tom Murphy VII Ph.D.∗

1 April 2015

Abstract

We present a GPU-accelerated means for red i removal
in photographs.

Keywords: computational photography, image processing,

generalized photoshop, artificial retinal networks, types

1 Introduction

When light—such as the bright flashbulb of a camera—
strikes the human eye, it illuminates the retina. Some
of that light bounces back out of the eye, but most of
it stimulates neurons in the retina to produce electrical
signals. These signals stimulate other neurons to which
they are connected, and so on, until the brain (which
is technically part of the eye) perceives an image, as a
two-dimensional array of neurons with different activa-
tion levels. Humans often use these images to sense the
world, for example, in reading research papers.
This research paper concerns a particular feature of
this process, which is that humans are able to view an
image and ignore certain details of it. For example,
Figure 1 contains a printout of an image file of a pho-
tograph of a television displaying a recorded video of
an actor. The video contains a superimposed eye in the
corner, the logo of the network CBS. Most viewers are
not tormented by this everpresent eye staring at them!
In fact, most viewers are able to completely ignore the
eye, and view the scene as though it didn’t contain the
stimulus, even if details such as the actor’s sweatshirt’s
collar pass beneath the stimulus and are occluded by it.
Some stimulus is more everpresent than others. The
Clay Mathematics Institute lists among its unsolved
Millennium Prize problems the “red i removal prob-
lem.” This concerns the removal of stimulus (a red letter
“i”) from images (Figure 2). The problem is particu-

∗Copyright 2015 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2015 with the increasingly askance visage
of the Association for Computational Heresy; IEEEEEE! press,
Verlag-Verlag volume no. 0x40-2A. 0.00 Australian Neo-Dollars

Figure 1: Q. Who watches the TV watchers? A. CBS’s
all-seeing eye.

larly difficult because the information occluded by the
i is completely gone, and because the authors of papers
about the problem are persistently agitated because it
seems like the letter should be capitalized.
In this paper I show how red i removal can be solved in
certain specialized cases, using an artificial retinal net-
work patterned after the brain contained within the hu-
man eye. Training this artificial retinal network is feasi-
ble on a single powerful desktop machine. Both training
and execution of the model (a mere 400 megabytes) are
GPU accelerated. The model presented in this paper
was trained in about 3 days, and executing it in parallel
on a suite of images takes about 100 milliseconds per
image.1

2 Artificial retinal networks

As I expertly foreshadowed in the previous section, an
artificial retinal network works just like the brain in-
side a human eye. The retina is itself a rectangular
2D array of neurons, which turn photons into IEEE-754
floating point values between 0.0f and 1.0f. Behind this

1Source code is available on the World Wide Web at:
http://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/redi

Figure 2: An image of an Enigma machine rotor with
a red i superimposed. Solving this instance of the red i
removal problem would mean producing an image with-
out the red i. One way to do this would be to steal a
floppy disk containing an original, unimposed image of
the rotor, from someone in possession of it, for example
the paper’s author.

is another 2D array of exactly the same size, except the
pixels are in a weird jumbled order, and then another
layer. This series of layers is known as the optic nerve.
Finally, the brain perceives the image as an array of
pixels, again of the same size (Figure 3).
It is easy to reconceptualize this process as an array
of pixels undergoing several transformations. Obviously
the story is more complicated: Humans see in color,
so each pixel is actually three different nodes, one for
red, green and blue. In fact, since some scientists hy-
pothesize of certain “superseers”—that is, people who
can perceive more than just the three wavelengths of
light—we actually allow an arbitrary number of nodes
per pixel. In this work, we used N = 4.
In a real human eye, each node is fed inputs from ev-
ery node in the previous layer. For computational effi-
ciency, in this work we allow only 64 inputs to each node
from the previous layer. Because we suspect that lay-
ers are spatially related, a node is always connected to
its neighborhood in the previous layer (each node from
the 9 pixels within Manhattan distance 1). The rest
of the inputs are selected randomly from a Gaussian
distribution, as long as the samples fall within the im-
age (using rejection sampling—the sides and corners do
not “wrap around”). By the way, the images are al-
ways 256x256, because numbers that are a power of two
are faster.2 The connection from one node to another

2This is true on computers, because computers count in binary.

Figure 3: How eyes work, and thus, artificial retinal
networks.

is modulated by a weight, again an IEEE-754 floating
point number. A node outputs the sum of its input val-
ues, passed through a smoothulator, specifically the one
found in Gray’s Anatomy (the book, not the TV show),

1

1 + e−v

This function is biologically plausible.
We learn by backpropagated stochastic gradient de-
scent, like babies do. Specifically: The network is pre-
sented with an image on its retina, and then we run the
floating point values through the layers, summing them
up and applying the smoothulator function, to produce
a final image within the brain. Like a baby, it com-
pares this image to what it expected to see, node by
node. Where each node does not agree with the image,
the error is computed. The baby propagates the par-
tial derivative of the change in error with respect to the
change in stimulus to the previous layer proportional to
its weighted impact; fortunately the smoothulator has
a simple derivative that is easily computed at a point
from its output values. Error is not propagated into the
real world (i.e., by sending light off of the retina back
to the physical object that created the stimulus; that
would be ridiculous).

2.1 Training data

One of the insights of this paper is that although ar-
tificial retinal networks require a lot of data to train,
for certain problems the training data can be easily
generated. For the red i removal problem, we begin
with a corpus of about 4,000 images that were scraped
from Google Image Search. Scraping images is easy;
one just needs to list a bunch of queries for things that
babies would want to view in order to learn what the
world looks like. In this experiment I used terms such
as [snakes], [dog on skateboard], [guitar], [stonehenge]
and [superyacht]. Following this, I manually cleaned

In the human eye, powers of ten are faster, because humans have
ten fingers.

the training data. I deleted images that were not pho-
tographic (drawings, etc.; for example, most images of
guitars are actually 3D rendered cartoon guitars, fan-
tasy images of guitars on fire, the Guitar Hero logo, and
so on) or that were too, uh, pornographic (most queries
for things that can have sex, like tapirs, contain promi-
nent images of the things having sex). These are not
appropriate for babies.
All images are cropped to a square and resized to
256x256. Then we generate training instances: An in-
put image and the expected result. An image that does
not contain a red i should just be transformed into the
image itself (indeed, when we peer directly into the
brain of a baby looking at a TV show, we find a re-
gion of the brain where the TV show is clearly visible).
It is also easy to generate instances of the red i removal
problem along with their solutions—we simply put a red
i randomly on the source image and keep the destination
image unchanged. In this way, we can easily generate a
large amount of training instances (in actual practice,
this procedure had a small bug; see Section 3.1). One
unexpected phenomenon is that I had to be careful to
remove images that already contained a red i, like many
images of casinos, which are often called “CASINO”.
In order to coax networks into recognizing the i, we
also place an i into the 4th color channel in the same
position in the expected output. This is an invisible color
channel which we discard, and which is always zero in
the input. In essence we giving a hint to the eye’s brain
that it should not just remove the red i, but it should
also perceive it. I have not performed enough experi-
ments to know if this is helpful.
For repeatability’s sake, important constants used in
this experiment: There were 2 hidden layers. Gaus-
san samples were produced with a standard deviation
of 16 pixels. The red i was rendered in Comic Sans, at a
height of 80 pixels. I used a variety of learning rates, in-
cluding an expontentially decreasing one (the standard
advice of 0.05 is too large for constant learning rates on
this kind of task, and limits the sharpness of resultant
images).

2.2 CUDA, SHUDA, WUDA

Because we are working with graphical data, we should
use the Graphics Processing Unit of the computer, not
its Central Processing Unit (we are not processing cen-
ters). I implemented high-performance OpenCL kernels
for each phase of training: The forward pass (signals
flowing from the retina to the eye’s brain), the back-
propagation step (when the eye computes the error and
partial derivatives) and the weight update step (when

the eye rewires its neurons so that it sees the right thing
next time). The phases have different parallelism con-
straints. Because the connectivity is sparse, we repre-
sent both forward and inverted index maps, which are
decoded on the GPU. We take care to only load a sin-
gle layer of the retinal network into the GPU’s RAM
at once, to enable very large models, but we run many
training instances in parallel for a single round. Some
other operations, like the preparation of training data,
are performed on the CPU. These are also frequently
done in parallel, using C++11’s new std::thread with
some crazy-ass wrappers to allow them to function in
mingw32’s 64-bit gcc port. On a good day, training
uses all 6 CPU cores and all 2800 GPU cores and about
14 GB of RAM and warms the home office like a 1kW
space heater.

3 Results

After 4 rounds of training, the network produces an
excellent-looking image that could be a Cure album
cover, regardless of the stimulus cast upon its retina
(Figure 4).

Figure 4: Result after 4 rounds of training. Looks great,
and there is no red i to be seen, but it loses some points
for not resembling the input image at all.

It’s not long before the network learns that it should
not produce the same result for every input, and the
output starts to mimic the input. These images look
sort of like the world viewed through frosted glass (Fig-
ure 5), simulating how a baby first learns to see the
world through the 1cm bulletproof Lexan of its translu-
cent BabyLearn incubation cylinder.
Soon thereafter, the network begins to converge on

something like the identity function, as this drastically
reduces error (even if some error is incurred by the
persistence of the red i). Left overnight (about 9,000
rounds), we start to see the network both produce im-
ages much like the original (perhaps through a hip “vin-
tage” Instagram filter), as well as removing the red i
stimulus (Figure 6).

3.1 Evaluation

With a further 30,000 rounds of training, the output im-
ages sharpen and lose their Instagram quality (maybe
only a small amount of “grain”), and the i is still suc-
cessfully removed. However, since we’ve now made
many passes over each image in the training set (and
the model has about 100,000 degrees of freedom), it is
certainly possible that we’ve simply overfit to this set
of images (that is, that the baby’s eye’s brain is simply
memorizing the i-free images and then recalling the one
that looks closest to the stimulus). To evaluate fairly,
we need to apply the model to totally new images that
it was not trained on. These are called “eval” images.

Firing this up, I observed that the model successfully
reproduced eval images that did not contain a red i; this
is good because it means that it is not simply memoriz-
ing the training set images. I then started placing red
i stimulus on the images with the mouse, and my heart
sank: It wasn’t removing the red i at all! Dejected, I
tried loading up the training images and putting a red
i on them—it also did not remove the i, which did not
make sense! Even for babies! Eventually, I discovered
that the red i would be removed, as expected, but only
when the i was in a handful of very specific locations.
This was found to be a bug in the random i placing
code; can you find it too?

uint8 x_dice = seed & 0x255;

seed >>= 8;

uint8 y_dice = seed & 0x255;

As a result, there are only 16 different possible x coor-
dinates, and same for y. Nonetheless, this is still 256 dif-
ferent i locations that work, which implies considerable
generality is possible. Due to Draconian SIGBOVIK
deadlines, I have not yet been able to test a debugged
training procedure.

Once the evaluation code only places an i at expected
locations, the artificial retinal network works well (Fig-
ure 7)!

4 Conclusions

We find that the supposedly impossible red i removal
problem is in fact solvable, at least in some forms, using
artificial retinal networks. There are some limitations
of the current model:

It has only been tested to remove the letter i when
it is rendered in bright red, in 30 point Comic Sans.

It probably also removes letters like j, but maybe
also in some other fonts, which is a sword that cuts
both ways.

Due to a bug, the red i must be at a position whose
coordinates are exactly 〈12 + x0 + 4x1 + 16x2 +
64x3, 12+ y0+4y1+16y2+63y3〉, for xj and yj in
{0, 1}.
It automatically and non-optionally applies
Instagram-style filters.

This technique can probably be applied to other im-
age processing problems, for example, J peg dequan-
tization. Here, we take an image and badly quantize
it (for example, to 4 bits per color channel), and the
training instance consists of the quantized image as in-
put and the original image as the expected output; the
retinal network learns how to fill in detail. Figure 8
shows the early stages (about 4000 rounds) of training
such a model.
A related, still unsolved problem is “red i reduction”;
here we do simply remove the i but replace it with a
smaller i. For example, we could replace a capital I
with a lowercase one, or replace a lowercase 30pt Comic
Sans i with a lowercase 29pt Comic Sans i. This is an
offshoot of the text ure compression field, which seeks
to make the text “ure” smaller wherever it appears.

Biologically-inspired computer algorithms hold many
wonders for those that seek to tap into the limitless po-
tential of the 85% of the human eye’s brain that is cur-
rently unused. Perhaps humans even contain graphics
processing units!

For higher-fidelity images and source code, please
consult http://tom7.org/redi.

Figure 5: Result after 80 rounds of training, with the
input image at the top and the signal proceeding down-
ward through two hidden layers. The hidden layers as-
pire to crazy noise-terror glitch art versions of the stim-
ulus as well.

Figure 6: After about 9,000 rounds. Top row is the
input image, the second row is the output (no longer
showing hidden layers because they all just look like
firefly raves); the bottom row shows 4x magnified detail
of the region formerly containing the red i. Images are
somewhat desaturated and blurry, but the red i is re-
moved. Note how in the right image, the retinal network
successfully continued both the horizontal and vertical
bookshelves into the occluded region. This is not a trick.

Figure 7: Evaluation on new images after 30,000 rounds
of training. Top row is the input image, the second row
is the output, and third is 4x magnified defail. The
first image (no i) shows the high amount of detail pre-
served. In the latter two, the i is successfully removed;
the quality of the replacement is not perfect, but cer-
tainly reasonable.

Figure 8: Evaluation of an early model for J peg dequan-
tization. The model still contains a lot of noise pixels,
which sometimes take a long time to converge, but it is
already easy to see how quantization artifacts have been
reduced (left). Actually, there is no reason why such de-
quantization must only be applied to J pegs; the right
column shows it working on a nice rainbow picture.

A Proof of the Twelve Color Theorem:
Hey, Nobody Bothered Before.

Sixth Grade Class Project for Mr. Blum

Y. T. Boveck Victoria V. Varg-Mack, VI

April 11
3
, 2071

Editor’s note: Several days ago, the wreckage of a small time
machine appeared in the program committee’s office, containing
apparently only a copy of the proceedings from SIGBOVIK 2071.
Unfortunately, all papers but one were burnt beyond recognition.
Current speculation holds that the time machine operators forgot
to disable the paradox safety interlock, and all the important (po-
tentially causality-violating) papers were destroyed, leaving only
this drivel. We’re publishing it anyway, sorry.

Abstract

Roughly 100 years ago, mathematicians successfully proved the 4-Color Theorem. Widely regarded
as one of the most important theorems in graph theory at the time, the 4-Color Theorem states that for
all planar graphs there exists an assignment of colors to nobes, such that no two adjacent nobes are
assigned the same color, with at most 4 colors used. However, modern-day computers are capable of
rendering far more diverse color palees, and the old 4-color limitation is now largely irrelevant. In this
work we extend the old result to support 12-colorings, offer some thoughts on generalization, and leave a
conspicuous hole in our proof to support our future work.

1 Introduction

Victoria said I had to write this section, even though she’s the only one of us who actually knows how the
4-color theorem proof goes. But luckily I found a proof for the 5-color theorem that made sense, and since
having more colors is obviously beer, that should work just as good. It goes like this:

Lemma 1.1. All planar graphs have at least one nobe with at most 5 neighbors.

Proof. Let N(n) mean how many neighbors a given nobe n has. Then because each edge connects two
nobes, the sum of all nobes’ neighbors

∑
n N(n) = 2e. Let’s assume all nobes have at least six neighbors.

Then 6n ≤ 2e.
Next let E(f) mean the number of edges that make up the border of a given face f of the graph. Since

each edge borders 2 faces,
∑

f E(f) = 2e. Every region is bounded by at least 3 edges so that means
3f ≤ 2e.

If we plug all that into the “Euler’s Forumula” that Mr. Blum gave us in class, which says that
n − e + f = 2, here’s what we get: n − e + f ≤ e

3 − e + 2e
3 = 0. But since n − e + f = 2 we end up

with 2 ≤ 0. Then we must have been wrong to assume all nobes have at least six neighbors. That’s a
“contradiction”!

Theorem 1.2. All planar graphs can be colored with no more than 5 colors so that no neighbor nobes have
the same color.

Proof. Let G mean the graph we’re trying to prove this for. Using the lemon I just proved, pick the nobe n
that has at most five neighbors and call those n1, n2, n3, n4, n5 in whatever order you want, but remember
the order! Let G′ mean the smaller graph you get by taking out n, which of course is still planar. Because
G′ is smaller, we already know with “induction” that G′ can be 5-colored. (That step seemed kinda weird
to me but Victoria said it was legit so please don’t take points off.)

Now we’re gonna assume G can’t be 5-colored. For this to be true, then each ni from 1 to 5 must all
have different colors, or else you could just pick the missing one for n. Let’s think about the sub-graph
that has only the 2 colors matching n1 and n3, call it G13. If the graph is disjoint, meaning n1 and n3

are in two separate parts, then you would be able to re-color the graph to make n3 have color 1, so you
can paint n with color 3. Therefore G13 must be connected. You can make the same argument for G24 to
be connected, but suddenly that doesn’t make any sense, because a path that keeps G24 connected would
have to intersect the connected G13!

So now, even if the 5-coloring of G′ gives all different colors to n1, n2, n3, n4, n5, you should be able
to re-color one of the nis so you can have a spare color to give to n. That means you can 5-color G.

Nice! Hey, that wasn’t so bad.

2 The 12-Color Theorem

In the previous section, Y.T. et al. outlined the prior work in the field. Now we will make our main
contribution; namely, to extend the 5-color theorem reviewed above to allow for 12-colorings of arbitrary
planar graphs.

Theorem 2.1. Given an arbitrary planar graph G, there exists an assignment of no more than 12 colors to
the set of nobes N(G) such that no two neighbouring nobes are assigned the same color.

Proof. Using Theorem 1.2, generate a 5-color assignment for G. As 5 is less than 12, this assignment
suffices.

Corollary 2.2. If G has at least 12 nobes, then all 12 colors may be used.

Proof. First we will prove the case for a smaller number of colors c < 12, by induction on c. Assume
a graph G with c or more nobes, and an existing assignment of c − 1 colors in which all colors are
represented, such that c < 12. The pigeonhole principle states that there must exist two nobes n1 and n2

with the same color. Simply assign the cth color to n2 in the new coloring.
Next for the case c = 12. Given a graph G with 12 or more nobes, there must exist an assignment of 11

colors in which all colors are represented. The pigeonhole principle states that there must exist two nobes
n1 and n2 with the same color. Assigning the 12th color to n2 causes all 12 colors to be used.

An example application of our algorithm is depicted in Figure 1.

3 Conclusions and Future Work

In this paper we reviewed historical developments in the field, with a particular focus on the proof of the
4-Color Theorem 5-Color Theorem; and we presented our main contribution, a constructive proof of our
new 12-Color Theorem based on the assumption of existing 4-colorings 5-colorings of an arbitrary planar
graph G.

The most significant limitation of our work is that a generalized version of our proof only applies for
C-colorings when C ≤ 12. In future research, we plan on extending our theorem to support ever greater
values of C. We hope the need for additional funding to study such advanced open problems is self-evident.

(a) Make a 4-color of your graph first. (b) Choose a nobe and color it different.

(c) Repeat that seven more times to get a 12-coloring! (d) If you had 51 different colors and wanted to use
them all, it would look like this. However, we are
leaving a proof of the existence of generalized 51-
colorings to future work.

Figure 1: Mr. Blum said we needed to have some pictures in our paper, so we pretended the USA was a
graph and colored it like our algorithm says.

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2015 Paper Review
Paper 10: A Proof of the Twelve-Color Theorem

Mr. Blum, New Pittsburgh Middle School
Rating: :(
Confidence: 4/4

This project makes a well-meaning, but ultimately entirely unconvincing, attempt at proving an

interesting theorem in computer science. In the early twenty-first century, when the four-color

theorem was still considered exciting, as opposed to something that all schoolchildren are taught

from an early age, this might have been a reasonable starting point for sixth-grade work. Unfortu-

nately, my standards are higher than this. I would have been more impressed if Y.T. and Victoria

had started with a more recent and interesting result, such as the 2068 paper of Blum et al. (no

relation) showing that P = NP.

Of course, as this class is “United States History: The 2017 Burrito Wars to the Present Day”, none

of the above has any bearing. Using our school’s standard grading scheme of :) to :(, I assign this

project a :(

SIGBOVIK, APRIL 2015

Visually Identifying Rank
David F. Fouhey, Mathematicians Hate Him!

Daniel Maturana, Random Forester Rufus von Woofles, Good Boy

Abstract—The visual estimation of the rank of a matrix has eluded researchers across a myriad of disciplines many years. In this
paper, we demonstrate the successful visual estimation of a matrix’s rank by treating it as a classification problem. When tested
on a dataset of tens-of-thousands of colormapped matrices of varying ranks, we not only achieve state-of-the-art performance,
but also distressingly high performance on an absolute basis.

Index Terms—perceptual organization; vitamin and rank deficiencies; egalitarianism in the positive-semi-definite cone; PAC
bounds for SVDs; class-conscious norms

�

(a) (b) (c)

Fig. 1. What are the ranks of these matrices? Which ones
are rank-deficient? In this paper, we investigate how one can
guesstimate the rank of a matrix from visual features alone.
See footnote on page 2 for answer.

1 INTRODUCTION

Consider Figure 1(b): what is the rank of the matrix?
Most people are confused. Some might hazard a
guess. A select collection of professors might say “3.”
The mystery of how professors can visually estimate
the rank of matrices from as little as a brief glance at
a jet-colormap rendering has puzzled researchers in
neuroscience, philosophy, mathematics, and computer
science for decades.

The rank of a matrix M reveals a great deal. By
definition, it tells us how many linearly independent
columns the matrix has; surprisingly, it also tells us
how many linearly independent rows the matrix has,
and if that does not get you excited, I do not know
what will. If we think of M as an operator, the rank
tells us about the dimensionality of its output, and
thus for a square matrix, whether M is invertible.

In this paper, we show how to identify the rank of a
matrix from an image alone. In contrast to past work
on guaranteed solutions to matrix rank computation

• All authors are with The Robotics Institute, Carnegie Mellon
University.
Send us fan mail at:
Neurotic Computing Institute c/o D. Fouhey, A.B. M.S.
EDSH 212
5000 Forbes Avenue
Pittsburgh, PA 15213

that require access to the matrix, our work gives
guarantee-free solutions that can operate on only an
colormapped version of a matrix. By treating matrix
rank as an image classification problem, we are able to
consistently achieve distressingly high performance –
≈ 40% accuracy on 10-way classification; ≈ 80%
accuracy on rank-deficient/not-rank-deficient binary
classification. In subsequent experiments we show the
following: 1) Our method can identify what matrices
seem low rank, and why; 2) Our method is easily
extended to structured prediction; 3) That activations
of our network can be even used as a feature for
semantic image classification with non-embarrassing
performance (20.9% on Caltech 101 with 15 samples).

2 RELATED WORK

In this work, we tackle two problems concerning
a square matrix M ∈ R

n×n. The first is a binary
classification problem: is M full-rank? The second is a
k-way classification problem: what is the rank of M?

Many approaches exist for solving both problems.
In the binary case, for instance, note that a square
matrix is full rank if and only if its determinant is non-
zero. This leads to a straight-forward way to check for
rank deficiency. Similarly, if we let UΣVT = M be
the singular value decomposition of M (i.e., Σi,i = σi

where σi is the ith singular value of M), then the
rank is the number of non-zero singular values. This
permits checking not only for rank deficiency but also
calculating the rank.

While these sorts of approaches enable the accurate
solution of both questions, they (a) require access to
the matrix itself (as opposed to a screen capture or
printout) and (b) have time complexity greater than
O(n2). SVD computation has complexity O(n3) and
determinant calculation is O(n3) with Bareiss [1] or
O(n2.807) with Bunch and Hopcroft [2]. Our work
aims to fix these gaps.

Our method requires only access to a visual repre-
sentation of the matrix, and thus answers the purely

SIGBOVIK, APRIL 2015

1 2 3 4 5 6 7 8 9 10

Fig. 2. Examples of matrices of various ranks. Top row: random instances; Bottom row: archtypical examples of
each rank, determined by the most confident classification examples from a pool of 1,000 matrices according to
a classifier.

visual way of computing rank as opposed to the
mechanical way of computing rank. When a professor
says a matrix looks rank-deficient, she is probably
not doing an SVD, but instead using some visual
smell-test (akin to the notion of direct perception as
proposed by psychologist J.J. Gibson [3]); we seek to
emulate this astounding ability.

Our method is O(n2). Feature extraction is only
dependent on the number of pixels for all methods
and thus O(n2). If we are doing binary classification,
it is O(1) and thus the method serves as a guarantee-
free quadratic-time rank-deficiency test. If we do n-
way classification, it depends on the method, but is
arguably O(1) for random forests, which most of our
methods use.

We acknowledge that our work gives no guar-
antees, but computer vision has a long history of
extraordinarily successful algorithms that may not
always be right. The Random Sample Consensus algo-
rithm [4], for instance, can give no guarantees about
its performance on any individual problem instance.
However, it works extraordinarily well in practice,
and the authors have taken it all the way to the
proverbial citation bank with a well-deserved ≈10,000
citations. Similarly effective methods include Simu-
lated Annealing, Iterative Conditional Modes (ICM)
[5], and many others. Our method may not be as
successful, but as presented in Table 1, our method
is surprisingly effective and has a certain je ne sais
quoi.

Our approach of neural-network based approaches
to linear algebra is not itself novel. However, previous
approaches (e.g., [6], [7], [8], among many others)
require direct access to the matrix itself. Our approach,
on the other hand, only gets access to an colormap of
the matrix.

The natural complement to the thematically-related
related work section (as above) is the alphabetically-
related related work section introduced in Fouhey and
Maturana’s seminal work on celebrity-themed learn-
ing [9]. In this paper, we extend this to a word-based

1. Answers first page quiz: a – rank 1; b – rank 3; c – rank 10.

TABLE 1
A comparison of ways to check whether a matrix is rank
deficient. We evaluate methods on their time complexity,
their success rate, whether there is an easy extension to

n-way rank calculation, and their Je Ne Sais Quoi.

Method Complexity Success Multi-class Je ne sais
Name (Time) Rate Extension quoi

SVD O(n3) 100% Yes Minimal
Det. O(n2.807) 100% No Kinda
CNN O(n2) 78.6% Yes Tons

related work section. A highly related technique is the
rank transform proposed by Zabih and Woodfill [10].
This method replaces each pixel by its “neighborhood
rank” to achieve invariance to monotonic illumination
differences. We employ a related technique, Local Bi-
nary Patterns [11] to extract features for our classifiers.
Also related are learning-to-rank algorithms such as
support vector ranking [12].

3 TECHNICAL APPROACH
We now introduce the method in simple English to
illustrate its simplicity. We take a matrix, visualize it
as a picture (like a.png), and feed it into a standard
image classification pipeline. More formally, we create
a fixed-length feature representation φ of the image,
and learn a mapping f that maps the representation to
a set of discrete classes. For instance, we might extract
standard image features like SIFT as φ, and apply a
standard technique like Random Forests or SVM to
learn an f . Similarly, we might train a convolutional
neural network (CNN) to predict the rank, serving as
both φ and f . This classifier is simply trained on a
collection of random matrices. We note that one ele-
gant aspect of our method is that rank-deficiency and
classification are encapsulated in the same learning
formulation.

3.1 Features and Learning Method
In this paper, we apply standard image classification
machinery by substituting in various standard fea-

SIGBOVIK, APRIL 2015

TABLE 2
Quantitative results on visual rank problems. Our paradigm of rank-prediction works surprisingly well across a myriad of

features and learning methods.

Learning method f Random Forest+Engineered RF + Pretrained Scratch CNN Chance
Feature map φ All Eng. Gray SIFT BoW Color SIFT BoW LBP BoW pool5 fc7 Raw Pixels

10-way Rank 38.1% 32.5% 36.5% 31.0% 33.7% 34.9% 43.5% 10%
Rank Deficiency 76.4% 73.1% 75.3% 73.9% 75.0% 76.3% 78.6% 50%

tures and learning methods for φ and f .
Shallow Learner + Features: Features (φ): The first
feature type we use is standard hand-engineered fea-
tures in the form of a bag-of-words (i.e., histogram)
representation over dense SIFT [13] and Local Binary
Patterns (LBP) [11]. To quantize SIFT, we build a
codebook with k-means; each extracted SIFT feature
is represented by the nearest cluster center (i.e., hard
assignment). Thus, each image is mapped to one or
more histograms of codewords; we concatenate his-
tograms when using multiple representations. We also
experiment with using the responses of a standard
convolutional neural network – Alexnet [14] – pre-
trained on the Imagenet dataset [15]. We use the
standard pool5 and fc7 features.

Learning Methods (f): We work with random forests
[16] although our method is entirely generic. In this
method, an ensemble of decision trees is trained inde-
pendently. During learning, splitting occurs on a ran-
dom subset of features and occurs until a minimum
number of samples is in a leaf. Whenever training,
we do 5-fold cross-validation on the training data
and select the values for both parameters (number
of features considered, minimum node size) that give
maximum mean performance.
Deep Learning: In keeping with the spirit of the
deep learning times, we train a CNN to map directly
from pixels to matrix rank. We refer to this as a
Scratch CNN in the experiments since it is learned
from scratch. Our experiments use a small amount of
data, so we adapt a network designed for the MNIST
dataset [17] that appears in the examples for [18].
Starting with all images resized to 60×60, our network
has architecture C(5, 20) → P (4, 3) → C(5, 50) →
P (4, 3) → C(4, 500) → R → softmax, where C(k, n)
denotes a convolutional layer with n filters of size
k× k, P (k, s) is max-pooling over a k× k region with
stride s, and R is a rectified linear unit. Empirically,
we found that the more aggressive max-pooling than
usual helped the network generalize to matrices of
other dimensions.

3.2 Implementation Details
We used Piotr Dollar’s toolbox [19], Vedaldi et al.’s
VLFeat [20], MatConvNet [18], and LIBSVM [21].
SIFT: We extract and quantize SIFT on both the gray
image and each of the R, G, and B channels separately;
each codebook has 256 entries and one codebook is

generated on training data per channel. The code-
books are learned once on the 10 × 10 training set.
Scratch CNN: We use a learning rate of 10−3 in a
standard gradient-descent+momentum approach and
1M iterations; to prevent overfitting, we use the first
iteration to have validation error within 1% of the final
validation error.

4 EXPERIMENTS

We now rigorously evaluate our approaches for vi-
sually guesstimating rank-related matrix properties.
Every figure and table in this section represents a true
experiment and actual results. We do not mess around.

4.1 Dataset

We perform our experiments on a dataset of 10 × 10
matrices, with 2000 examples of each rank 1, . . . , 10,
which we split evenly into train and test. When doing
binary rank-deficiency classification, we balance class
distributions by downsampling the rank deficient
class. We generate these matrices by first sampling a
matrix M with entries uniformly and independently
sampled from the interval [0, 1]. We then compute
its SVD M = UΣVT and set Σ̃ to Σ but with the
r + 1, . . . , nth entries to 0 and compute UΣ̃VT .

We convert each matrix to a 100×100 image, which
we store as a PNG. This is done in MATLAB by calling
the underlying colormapping functionality used by
imagesc and then upsampling with nearest neighbor.
In this paper, we primarily use the traditional and
often criticized jet colormap, but we also experiment
with two linear colormaps, copper and bone. All
colormaps have 255 possible values and are scaled by
the min and max of the matrices (i.e., the default of
imagesc, where no absolute scale is imposed). Note
that the many matrices of a variety of ranks may
map to the same colormap visualization due to both
colormap and PNG quantization.

4.2 Experiments – Features

In this section, we ask the question: what visual
features are best suited for visually identifying the
rank of a matrix? Is color a useful cue? It was argued
in [22] that off-the-shelf pre-trained CNN features
are an astoundingly effective baseline for any generic
vision task – does this include profoundly unnatural

SIGBOVIK, APRIL 2015

Jet (38.1%) Bone (35.2%) Copper (33.6%)

Fig. 3. Confusion matrices and accuracies for different
colormaps on the 10-way rank classification problem using
dense SIFT and LBP. Note that while there is variation,
performance is decidedly above chance across colormaps.

images such as color-mapped matrices? Does learning
a specialized CNN work on this task?

We present results in Table 2 showing the perfor-
mance of various features. In the hand-engineered
category, grayscale SIFT seems to perform on par
with LBP; adding color considerably improves per-
formance; and using all features does the best. The
pretrained CNN does well despite the giant domain
shift with both layers do slightly better than grayscale
SIFT. However, in keeping with current results in
computer vision, training a CNN from scratch consis-
tently does the best. Note, however, that all feature and
method combinations operate at significantly above chance-
level.

4.3 Experiments – Colormaps
One natural question is whether the colormapping
scheme affects the visual discrimination between ma-
trices of different ranks. The jet colormap (e.g., Figs.
1, 5) in particular has received a lot of criticism for
being difficult to interpret in practice by humans. Lin-
ear colormaps (i.e., smoothly varying from one color
to another) in theory make for easier interpretation by
humans. We see whether this holds true for computers
as well. We compare the jet colormap (named for
its origin in astrophysical fluid jet simulation) with
copper and bone. The etymology of copper is –
we hope for the reader’s sake – obvious; bone is so
named because it looks somewhat like an X-ray and
is popular because it lets researchers like us try to
pretend to be brain-surgeons.

We run our learning method on matrices with a
variety of colormaps and report 10-way classification
results in Fig. 3 and 4. Generally, jet does the best.
The only representation on which it does appreciably
worse is the pre-trained CNN; we hypothesize this is
because the linear colormaps produce more natural
images, whereas the jet colormap’s outputs look like
noise. Using grayscale SIFT, the results are roughly
comparable, which is somewhat surprising as jet is
known to convert poorly to grayscale. Nonetheless,
while these differences exist, one consistent pattern
is that the proposed method works surprisingly well
across all colormaps.

(P) 3 / (A) 1 (P) 10 / (A) 2 (P) 2 / (A) 10
Predicted / Actual Rank

Fig. 5. Failure cases: some deceptive matrices with their
(P)redicted and (A)ctual ranks, selected from the most confi-
dent mistakes of a RF classifier using dense SIFT and LBP
features.

4.4 Experiments – Cross Domain
One recent pressing concern in the computer vision
community is the biased nature of datasets: models
learned on one dataset might not perform even rea-
sonably on another, as reported in [23]. In our case,
one might wonder whether a model learned to predict
the rank of a 10 × 10 matrix (with a fixed set of
ranks 1, . . . , 10) can generalize to matrices of different
sizes (e.g., 30 × 30). To answer this, we train a 10-
class random forest on square matrices of dimensions
10, 15, and 30, and test them on different sizes; bag-
of-word features are generated using the 10 × 10
matrix codebooks. These new matrix images have
dimensions 150 × 150 and 300 × 300 respectively to
maintain scale for the SIFT features. CNNs require a
fixed input, and so we cannot apply this scaling trick
to them.

We train a model to predict ranks 1, . . . , 10 for all
matrix sizes involved and report results in Table 3.
Our method does surprisingly well, performing at
around 2.5× chance-level when training on 10 × 10
matrices and testing on 30 × 30 matrices and vice-
versa. The scratch CNN generalizes well, with the
exception of the 30 × 30 scratch CNN on 10 × 10
data, which operates at chance level. This is poor
generalization as opposed to a bad model to start
with: the same model gets 49.7% when testing on
30×30 and 14.6% on 15×15. We believe generalization
could be improved by developing an architecture that
would enable the row-to-pixel ratio to be constant.

5 DISCUSSION

The success of such a simple approach raises a num-
ber of questions, but our method also enables answer
to some of these. For instance, we can see what makes
a matrix smell rank deficient by analyzing the learned
relationship between φ and f . We now discuss a few
of these questions as well as extensions.

5.1 What does an archetypical rank-k matrix look
like and which matrices are tricky to classify?
We can answer each of these questions by looking at
the classifier scores; by looking at the most confident

SIGBOVIK, APRIL 2015

All E. BoWC BoWg LBP P5 FC7 Scratch All E. BoWC BoWg LBP P5 FC7 Scratch All E. BoWC BoWg LBP P5 FC7 Scratch
0

5

10

15

20

25

30

35

40

45

50

Colormap + Method

10
−

w
ay

 A
cc

ur
ac

y

Fig. 4. What colormap is best for predicting matrix rank? (Left to right: jet, bone, copper). While Jet has been criticized
widely compared to linear colormaps, it produces the best results with color sift and the from-scratch CNN

TABLE 3
Cross-domain performance: We report the accuracy of the methods on 10-way classification. Although chance on this task

is 10%, most of our methods perform substantially better than chance.

Train Test Random Forest+Engineered RF + Pretrained Scratch CNN
Dim. Dim. All Eng. Gray SIFT Color SIFT LBP pool5 fc7 Raw Pixels

10× 10
10× 10 38.1% 32.5% 36.5% 31.0% 33.7% 34.9% 43.5%
15× 15 33.7% 31.5% 33.5% 27.3% 25.7% 26.1% 37.9%
30× 30 25.9% 19.1% 25.3% 19.4% 17.7% 17.5% 24.1%

15× 15
10× 10

33.0% 28.1% 32.0% 26.5% 13.9% 14.4% 34.1%
30× 30 25.8% 22.7% 23.8% 21.6% 11.5% 11.8% 10.0%

mistakes of the classifier, we can find the most rank-
deceptive matrices. We present some archetypical ma-
trices in Fig. 2 according to RF classifier using all
features. While the rank 1 matrix archetype is under-
standable, ranks 2 and up seem inscrutable. Nonethe-
less, the model is perfectly confident in its assessment
of these matrices and is correct a surprising amount of
time. Fig. 5 shows the model’s confident mistakes. On
the left, for instance, is shown a rank-1 matrix with
not too much apparent inter-row/column similarity
that was mistakenly predicted to rank 3 by the RF.

5.2 What parts of matrices tell us rank?

Given our bag-of-words model, we can answer this
by figuring out which codewords help the most in
predicting rank as well as their sign (i.e., which codes
are most associated with rank-1 rather than rank-10).
We solve both by learning a L2-regularized logistic
regression model to predict Rank-i or Rank-j, which
we solve with LIBLINEAR [24]. The regularization
parameter λ is selected via 5-fold cross-validation to
give best average performance. The coefficients of the
model w in terms of magnitude and sign indicate
which codewords are indicative of rank deficiency.

We can visualize the informative regions of matrices
by replacing pixels with the weight vector of their as-
sociated codewords. We show a few examples of this
for low rank and high rank matrices using grayscale
SIFT in Fig. 6. For rank 1, the regions associated with
low rank have low frequency, and the codewords
associated with high rank occur mainly at the sharp
transition from the penultimate and blue column to
the last column. The other ranks are a bit harder to

Image All High Weight

Rank 1

Rank 2

Rank 10

Fig. 6. A visualization of what makes a matrix look rank-
deficient according to gray-scale SIFT. We train a logistic
regressor to predict rank-k vs. full rank and plot weight-vector
coefficients onto the image wherever the codeword appears.
Blue is low rank, red high.

interpret, although the one can note the most strongly
low-rank regions correspond to flat regions.

5.3 Can We Solve Structured Tasks?
So far, our approach of doing mathematics by learning
has only been applied to classification problems. In-

SIGBOVIK, APRIL 2015

Fig. 7. Examples from our deep visual multiplication net.

A B Pred. A ·B True A ·B MSE

0.033

0.014

0.012

spired by our success in visual rank estimation, we are
currently exploring the application of our framework
to structured outputs, such as matrices.

In particular, we consider matrix multiplication
and inversion, where for centuries mathematicians
have relied on hand-crafted, shallow methods. Again,
keeping with the times we propose to replace these
methods with visual deep learning. To this end we
designed a deep learning architecture, differing only
in the input for each task: for the multiplication task
we used two M × M concatenated multiplicands as
input, whereas in the inversion task there is a single
M × M input. The input is connected to two fully
connected layers using ReLU nonlinearities of 512
hidden units each, followed by a fully connected
M × M output layer with no nonlinearity. Dropout
regularization was used in all layers. We generate
5 · 105 training examples for each task. In both cases
we use 3× 3 matrices with each entry independently
sampled from a uniform(0, 1) distribution as input,
and their “true”2 product and inverse as outputs.

We then use this data to train the network with
stochastic gradient descent on a mean square error
(MSE) loss for 100 epochs. Some qualitative predic-
tions on unseen data are shown in Figures 7 and 8.
We found the multiplication task to be easily solved
by our network architecture, but the inversion task
proved much more challenging, as shown by the
higher MSE values. We note that this is analogous to
humans taking Linear Algebra 101.

5.4 Can This Work On Real Data?
One advantage of our method is that it does not
require access to the matrices themselves; but what
if we only have a picture of the colormapped matrix?
As a proof of concept, we took a cell-phone picture of
each part of Fig. 1 of this paper, as shown in Fig. 9,
left. We cropped out the matrix from the cell phone
picture, as shown in Fig. 9, right. We then resized

2. At least according to our matrix library.

Fig. 8. Examples from our deep visual matrix inverse net.

A Predicted A−1 True A−1 MSE

0.25

0.49

1.56

1 (92.8%) 10 (48.1%) 10 (45.5%)

Fig. 9. Results on cropped images from cell-phone pictures
of a computer monitor. (Left) sample pre-cropped image;
(right) cropped images, their predicted rank, and posterior
from the scratch CNN.

it and sent it through our scratch CNN. The rank 1
matrix was classified correctly, but both the rank 3 and
rank 10 matrix were classified as rank 10. We note,
however, that all images have perspective distortion
that the CNN did not see at training time.

5.5 Does the matrix rank network generalize?
In our experiments, we confirmed the reports of [22]
that one can use neuron activations from a network
pretrained for classification as a strong feature for a
variety of tasks; but can we use do the reverse? In
other words, can we use activations in our scratch
CNN as a feature for image classification?

To evaluate this, we tested our method on the
Caltech 101 dataset [25]. We used the concatenated
features from the last and second-to-last layers of the
rank network (i.e., the softmax responses and the half-
wave rectified feature map immediately before) as a
feature representation. We then trained a multiclass
SVMs (1v1, linear kernel) on top of these representa-
tions. We report results in Table 4; results are averaged
over 1K random samplings of train sets; for test,
we use an equal number per-class. While far from
state-of-the-art, the numbers are respectable given that
the underlying feature representation was trained to
estimate matrix ranks.

6 CONCLUSIONS

In this paper, we introduced a new problem – visual
rank estimation – and demonstrated that it is feasible

SIGBOVIK, APRIL 2015

TABLE 4
Results on Caltech 101, training a linear SVM over

responses from our scratch rank CNN. Chance on this
dataset is ≈ 1%.

Samples 5 10 15 20 25
Accuracy 12.6% 17.7% 20.9% 23.3% 25.1%

using conventional image classification approaches.
Our approach is simple and obtains alarmingly high
performance. More importantly, our features also con-
veys understanding by showing us why some ma-
trices just look low rank and what matrices have
surprising rank. We have additionally demonstrated
future directions in the form of structured prediction
and have demonstrated that our rank predictor CNN
can serve as a generic image feature.

REFERENCES

[1] E. Bareiss, “Sylvester’s identity and multistep integer-
preserving Gaussian elimination,” Mathematics of Computation,
vol. 22, no. 102, 1968.

[2] J. Bunch and J. Hopcroft, “Triangular factorization and inver-
sion by fast matrix multiplication,” Mathematics of Computation,
vol. 28, no. 125, 1974.

[3] J. Gibson, The Ecological Approach to Visual Perception. 1979.
[4] M. Fischler and R. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. of the ACM, vol. 24,
June 1981.

[5] J. Besag, “On the statistical analysis of dirty pictures,” Journal
of the Royal Statistical Society, Series B (Methodological), vol. 48,
no. 3, pp. 259–302, 1986.

[6] J. J. Hopfield and D. W. Tank, ““Neural” computation of deci-
sions in optimization problems,” Biological Cybernetics, vol. 52,
pp. 141–152, 1985.

[7] M. Kennedy and L. Chua, “Neural networks for nonlinear pro-
gramming,” Circuits and Systems, IEEE Transactions on, vol. 35,
pp. 554–562, May 1988.

[8] A. Cichocki and R. Unbehauen, “Neural networks for solving
systems of linear equations and related problems,” Circuits and
Systems I: Fundamental Theory and Applications, IEEE Transac-
tions on, vol. 39, pp. 124–138, Feb 1992.

[9] D. F. Fouhey and D. Maturana, “The Kardashian Kernel,” in
SIGBOVIK, 2012.

[10] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondence,” in ECCV, 1994.

[11] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns,” TPAMI, vol. 24, no. 7, 2002.

[12] T. Joachims, “Optimizing search engines using clickthrough
data,” in KDD, 2002.

[13] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
NIPS, 2012.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” 2014.

[16] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural
networks for matlab,” CoRR, vol. abs/1412.4564, 2014.

[19] P. Dollár, “Piotr’s Image and Video Matlab Toolbox (PMT).”
http://vision.ucsd.edu/ pdollar/toolbox/doc/index.html.

[20] A. Vedaldi and B. Fulkerson, “VLFeat: An open
and portable library of computer vision algorithms.”
http://www.vlfeat.org/, 2008.

[21] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[22] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: an astounding baseline for recognition,”
CoRR, vol. abs/1403.6382, 2014.

[23] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,”
in CVPR, 2011.

[24] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal
of Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[25] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories,” in IEEE
CVPR Workshop of Generative Model Based Vision (WGMBV),
2004.

David F. Fouhey David F. Fouhey received
an A.B. from Middlebury College in Moose
Watching in 2011. He is currently a Ph.D.
student at the Robotics Institute at Carnegie
Mellon University. He likes long walks, Ed-
ward Hopper, macchiatos, Jaffa Cakes, and,
above all, kvetching. In his copious spare
time, he sends fake announcements to the
New York Times’ Wedding Section. He and his
colleagues were awarded the People’s Demo-
cratic Choice Award at SIGBOVIK 2013.

Daniel Maturana Daniel comes from Chile.
Daniel likes Eat’n Park, bicycling, recycling,
and Pabst Blue Ribbon. You won’t believe
the one weird trick that credit card compa-
nies hate that Daniel uses to make money
at home thanks to Obama lowering 10-year
mortgage rates! He and his colleagues were
awarded the People’s Democratic Choice Award
at SIGBOVIK 2013.

Rufus von Woofles Rufus von Woofles is a
good boy, isn’t he. Yesh he is. Rufus obtained
his DoD (Doggy Obedience Diploma), First
Class, from Muddy Paws University. Rufus
is currently the PI of CHOCOLATE Lab at
Carnegie Mellon University, where he leads
research on predicting pizza-delivery-man
appearance. Rufus likes wagging his tail and
belly rubs. Rufus was awarded the People’s
Democratic Choice Award at SIGBOVIK 2013,
but he tore it up.

Transparency Report

United States Three Letter Agency

1 April 2015

Here at Three Letter Agency, we care deeply about transparency. We have
implemented a transparency policy carefully designed to ensure that trans-
parency is at the heart of everything we do. Transparency means that you
can set your mind at ease. Our track record proves that transparency is a
top priority for us. We are more transparent than air itself. Transparency is
our commitment to you. Our mission is to be the most transparent agency on
the planet. We worry about transparency so that you don’t have to. We take
transparency very seriously. We use transparencies in all of our presentations.
Finger lickin’ transparent. Taste the transparency. Always transparent. We
conduct regular transparency audits. We once briefly believed that we were
not being transparent, but it was a mistake. A transparent proxy intercepts
normal communication at the network layer without requiring any special client
configuration, such that clients need not be aware of the existence of the proxy.
Transparency keeps you safe. We have a long tradition of transparent processes
and outcomes. We make transparency work for you. Transparency is in our
DNA. Think transparent. Got transparency? So transparent, no wonder it’s
number one. Every breath you take, every move you make, we’ll be transparent.

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2015 Paper Review
Paper 7: Burritos for the Hungry Mathematician

A. G.
Rating: 3 (weak accept)
Confidence: 2/4

This paper presents a novel category theoretic understanding of burritos. This understanding is a

major step forward in the eventual goal of understanding the categorical structure of Füd. The def-
inition of the tortilla endofunctor is a significant research contribution that is a start at illuminating

the mysterious structure of Füd. However, the reviewer is not satisfied with just the definition of the
tortilla endofunctor and believes that either the author should define the other endofunctors in this

category or prove a uniqueness theorem as to why the tortilla endofunctor is the only one possible.

This reviewer suspects that there may actually be infinite endofunctors in Füd once one considers,
crêpes, blini, wraps, etc – the whole set of circular two dimensional vessels for enclosing food.

A New Paradigm for Certified Code

Stefan Muller

Carnegie Mellon University

smuller@cs.cmu.edu

Abstract
Everyone likes running programs, but before you run a piece

of code, you want to be sure that it’s actually code. Utterly

ignoring building on a large body of work in certified code,
we solve this ever-so-common problem.

1. Introduction
Dozens of prior studies over several years have worked in the

area of “certified code” (e.g. [1–5, 7, 9, 10, 12–14]). Like all

great researchers, the present author didn’t read any of these

papers, as such a literature study clouds one’s mind with

lesser ideas and stifles true innovation. Instead, this paper

presents an entirely novel way of generating and running

certified code. You’re welcome.

In these fast-and-loose days of computing, it is com-

mon to assume that a given file is an executable binary, run

chmod +x on it, and execute it willy-nilly. However, doing

this on a non-executable file can severely damage one’s com-

puter1. It is thus vital to the security of computers that, prior

to executing a file, we certify that it is, in fact, code (as op-
posed to, for example, a humorous animated GIF of a cat).

This is the domain of certified code. In this paper, we de-
scribe CODECERT, a new, language-independent method of

generating certified code from source, and running it safely.

2. The CODECERT System
The key observation underlying CODECERT is that exe-

cutable binaries are the result of running a compiler on a

piece of source code. This observation, explained in Fig-

ure 1, means that, to certify that a file is a binary, and there-

fore code, we need only certify that it is the output of a com-

piler.

1 Or gracefully throw an exception and exit, as the case may be.

Permission to make shallow or deep copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage (because that would just be mean), that copies bear
this notice and that bears copy this notice.

SIGBOVIK ’15, April 1, 2015, Pittsburgh, Pennsylvania, USA.
Copyright c© 2015 ACH . . . $1000.00 (or best offer)

Figure 1: A binary is the output of a compiler on source

code. If the inputs are not a compiler and source code, no

guarantees are possible.

Figure 2: The CODECERT system compiles a given source

file with a given compiler and compares the result with a

given file. The file is a binary if and only if the results match.

Compilers Not compilers

gcc ls

javac awk

ghc echo

ocamlc sleep

gc apt-get

coqc emacs

fbc bash

Table 1: Comparison of compilers and non-compilers

The simplest way to do this is to keep as proof artifacts

the source code and the compiler, and show that the pur-

ported binary is actually what is obtained by running the

purported compiler on the purported source. This process is

explained in further detail in Figure 2.

To produce certified code, the CODECERT system takes

a purported binary, along with its source code and the com-

piler with which it was compiled. These three files are pack-

aged together. When the certified binary is to be run, CODE-

CERT compiles the packaged source code with the packaged

compiler. If this matches the purported binary, the binary is

executed. Otherwise, the file is determined to not be a binary,

and the user is warned not to execute it.

2.1 Certified Compilers
At this point, the astute reader may observe that the pro-

cess described above works only if the compiler provided to

CODECERT is actually a compiler. Otherwise, the “source

code” could be, for example, an image and the “compiler”

could be a program that, for example, adds captions to im-

ages. This concern led us to conduct novel research in the

area of certified compilers [6, 8], related to certified code.
Our method for certifying that a program is a compiler relies

on a second key observation. This observation was reached

after detailed study of a large number of compilers and non-

compiler utilities, catalogued in Table 1. Note that all com-

pilers in the list end in the letter “c” while no non-compilers

do. The CODECERT code generator takes advantage of this

fact to certify that the provided binary is a compiler before

generating the package.

Figure 3: In the first instance, CODECERT correctly deter-

mines that hello is code. In the second, it correctly deter-

mines that cat.jpg is not code.

3. Proof of Correctness
We now formally prove that CODECERT is correct in that

running a certified code package generated by CODECERT

will proceed only if the provided file is indeed code.

Theorem 1. If CODECERT produces a certified code pack-
age from a file e, then either e is an executable or running
the code package using CODECERT will produce an error.

Proof. By induction on the length of the filename of e. A
zero-character filename is invalid, so the base case is trivial.

If the length is n, rename e to a name of n − 1 characters.
By induction, this new file, and therefore e, is either an
executable or will produce an error.

4. Implementation
Our CODECERT package consists of two utilities: mkcode

and runcode. The mkcode utility takes as command-line

arguments a source code file, its compiler, the name of the

uncertified binary and the name of the certified package

to output and, as the name suggests, mks a certified code

package. This utility is 12 lines of Bash script code which

certifies the compiler and, if valid, prepares a .tar archive of

the provided files, along with the command line with which

to invoke the compiler2.

The second utility, runcode, extracts the files from the

archive, invokves the compiler and uses diff to compare the

output with the provided binary. If they match, the binary

is executed. Otherwise, an error is produced. This utility

consists of nine lines of Bash code. Figure 3 shows two

interactions with CODECERT.

5. Related Work
A closely related avenue of research which we hope to soon

explore (read: solve) is proof-carrying code [11]. For exam-
ple, see Figure 4.

References
[1] A. W. Appel and A. P. Felty. A semantic model of

types and machine instructions for proof-carrying code.

2 This is assumed to be ./<compiler> -o <output> <src>. If the com-

piler arguments do not take this form, mkcodewill fail gracefully and output

an error. We assume. This hasn’t actually been tested.

1 (∗ Suppose s q r t (2) = a / b where a , b are n o t bo th even .
2 ∗ 2b ˆ2 = a ˆ 2 , so a ˆ2 i s even , so a=2n
3 ∗ 2b ˆ2 = 4n ˆ2
4 ∗ b ˆ2 = 2n ˆ2
5 ∗ b ˆ2 i s even , so b i s even . C o n t r a d i c t i o n .
6 ∗)
7

8 l e t rec f i b n =
9 i f n <= 1 then 1 e l s e (f i b (n − 1)) + (f i b (n − 2))

Figure 4: This code carries a proof that
√
2 is irrational. It

also computes Fibonacci numbers.

In Proceedings of the 27th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL
’00, pages 243–253, New York, NY, USA, 2000. ACM.

ISBN 1-58113-125-9. doi: 10.1145/325694.325727. URL

http://doi.acm.org/10.1145/325694.325727.

[2] S. Chaki, J. Ivers, P. Lee, K. Wallnau, and N. Zeilberger.

Model-driven construction of certified binaries. In Pro-
ceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, MOD-

ELS’07, pages 666–681, Berlin, Heidelberg, 2007. Springer-

Verlag. ISBN 3-540-75208-0, 978-3-540-75208-0. URL

http://dl.acm.org/citation.cfm?id=2394101.2394161.

[3] K. Crary and S. Sarkar. Foundational certified code

in the twelf metalogical framework. ACM Trans.
Comput. Logic, 9(3):16:1–16:26, June 2008. ISSN

1529-3785. doi: 10.1145/1352582.1352584. URL

http://doi.acm.org/10.1145/1352582.1352584.

[4] K. Crary and J. C. Vanderwaart. An expressive, scalable type

theory for certified code. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Program-
ming, ICFP ’02, pages 191–205, New York, NY, USA, 2002.
ACM. ISBN 1-58113-487-8. doi: 10.1145/581478.581497.

URL http://doi.acm.org/10.1145/581478.581497.

[5] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and

Z. Ni. A syntactic approach to foundational proof-

carrying code. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, LICS
’02, pages 89–100, Washington, DC, USA, 2002.

IEEE Computer Society. ISBN 0-7695-1483-9. URL

http://dl.acm.org/citation.cfm?id=645683.664592.

[6] X. Leroy. Formal certification of a compiler back-end or:

Programming a compiler with a proof assistant. In Con-
ference Record of the 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’06,
pages 42–54, New York, NY, USA, 2006. ACM. ISBN

1-59593-027-2. doi: 10.1145/1111037.1111042. URL

http://doi.acm.org/10.1145/1111037.1111042.

[7] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1999. ISBN 0201432943.

[8] J. S. Moore. A mechanically verified lan-

guage implementation. J. Autom. Reason., 5(4):

461–492, Nov. 1989. ISSN 0168-7433. URL

http://dl.acm.org/citation.cfm?id=83471.83477.

[9] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,

F. Smith, D. Walker, S. Weirich, and S. Zdancewic. Talx86: A

realistic typed assembly language. In In Second Workshop on
Compiler Support for System Software, pages 25–35, 1999.

[10] T. Murphy, VII. Ml grid programming with concert.

In Proceedings of the 2006 Workshop on ML, ML ’06,

pages 2–11, New York, NY, USA, 2006. ACM. ISBN

1-59593-483-9. doi: 10.1145/1159876.1159879. URL

http://doi.acm.org/10.1145/1159876.1159879.

[11] G. C. Necula. Proof-carrying code. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’97, pages

106–119, New York, NY, USA, 1997. ACM. ISBN

0-89791-853-3. doi: 10.1145/263699.263712. URL

http://doi.acm.org/10.1145/263699.263712.

[12] G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1998. AAI9918593.

[13] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A

type system for certified binaries. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’02, pages

217–232, New York, NY, USA, 2002. ACM. ISBN

1-58113-450-9. doi: 10.1145/503272.503293. URL

http://doi.acm.org/10.1145/503272.503293.

[14] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou.

A type system for certified binaries. ACM Trans.
Program. Lang. Syst., 27(1):1–45, Jan. 2005. ISSN

0164-0925. doi: 10.1145/1053468.1053469. URL

http://doi.acm.org/10.1145/1053468.1053469.

Beyond the Halting Problem
Higher Order Infinite Loop Checkers

Jody Leonard and Aaron Santiago

jleonard11@simons-rock.edu asantiago11@simons-rock.edu
Division of Science, Mathematics and Computing, Bard College at Simon’s Rock

Abstract. The infamous Halting Problem asks whether it is possible to determine
whether an arbitrary program P halts on arbitrary input x. It is well known that the
Halting Problem is undecidable for all input pairs of P and x - however, this question
nevertheless remains woefully unexplored. In this landmark paper, we reframe the
investigation with a more practical construction: infinite loop checkers.

Keywords: computability, decidability, in-
finite, loop, checker.

1 Introduction

In 1936, Alan Turing’s delivered his pa-
per “On Computable Numbers, with an
Application to the Entscheidungsproblem”
[3] as a response to the famous Entschei-
dungsproblem1. In essence, Turing showed
that for all programs P and inputs to those
programs x, the language

LH := {(P, x)|P halts when run on x},

also known as the Halting Problem, is not
computable on a Turing Machine. Since
the Halting Problem can be reduced to the
Entscheidungsproblem, it follows that the
Entscheidungsproblem has no general so-
lution.

Our paper does not challenge Turing’s
conclusions, but rather draws attention to
some important concerns and limitations
of Turing’s circumstances:

• Before the 1990s, there was no suffi-
cient method to test any of Turing’s re-
sults because programming didn’t exist

1 Elvish for “tree fecal issue”. For more infor-
mation, see [2].

yet. The release of Python and other
programming languages have all but
solved this problem.

• Technology now has reached levels of
computational power that would be
unfathomable to researchers of Tur-
ing’s time. The clock speed of Turing
Machines are lumps of dirt compared
to the chips found in even the light
switches of today.

• Alan Turing was a much too attrac-
tive man. This meant that his ability
to design theoretically valid statements
must have been impaired by his ability
to socialize.

With these limitations in mind, it is im-
portant to reassess the foundations of Tur-
ing’s arguments in order to continue com-
puting as a whole. Even though no one
can know for sure, the authors believe that
without such a change in direction, com-
puting will be forced to stop.

To this end, we re-define and oper-
ationalize the Halting Problem in terms
of a construction we call the infinite loop
checker. Critically, this construction allows
us to better consider extrapolations of the
Halting Problem, which we term orders of
infinite loop checkers.

2 Definitions

We begin by establishing a key concept
with Definition 1.

Definition 1. A program P verifies pro-
gram S iff P returns True when its input
is equivalent to S, and False otherwise.

We define an infinite loop checker of or-
der n to be a program that verifies a loop
checker of order n−1. This allows a simple
natural language definition given in Defini-
tion 2.

Definition 2. An infinite loop checker of
order n is the following:

“infinite loop checker . . . checker︸ ︷︷ ︸
n times

”

For example, an infinite loop checker of
order n = 420 is an infinite loop checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker

checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker

checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker checker
checker checker checker checker. This is
obviously a very high order. For conve-
nience, particularly in dealing with high
orders, we adopt the notation given in Def-
inition 3.
Definition 3. ILCn is an infinite loop
checker of order n.
The above language-notated infinite loop
checker is equivalent to ILC420.

3 The Infinite Loop Checker
Checker

The Halting Problem, along with Turing’s
proof, is widely known. However, the def-
initions given in Section 2 prompt us to
consider the case of ILC2. Lemma 1 offers
the first of our foundational results.

Lemma 1. ILC2 is computable.

To prove Lemma 1, we provide pseu-
docode for what we believe to be a poly-
time algorithm. The approach is described
in Algorithm 1.

Algorithm 1 Infinite Loop Checker
Checker
Input: P , a program.
Output: True if P is an infinite loop checker;

False otherwise.
return False

A table containing the experimental run-
times of Algorithm 1 is given in Table 12.
2 Tests were performed on a 2010 Alienware

M11x R2 running 32-bit Ubuntu through an
emulated Commodore 64.

From this table, we conclude that Algo-
rithm 1 runs in O

(
1
)
, because the p-values

are good enough3. Further, it’s clear that
Algorithm 1 runs very quickly, as comput-
ing all of Table 1 took just under 70 units
of time. A theoretical runtime analysis is
pending construction of a program that can
verify the runtime of Algorithm 1.

Table 1: Experimental Results of ILC2
Input (Description) Output Runtime
Bubblesort False 6.902
Quicksort False 6.900
Bogosort False 6.899
Panicsort False 6.901
blank file False 6.898
Checker.tex False 6.899
vista-sp2.iso4 False 6.897
hl3.exe False 6.902
The Deep Web False 6.903
song.mp35 False 6.899

4 High Order Infinite Loop
Checkers

In trying to aggressively improve the per-
formance of our ILC2 implementations, we
attempted to create a program to verify
ILC2, and found that, like ILC1, this prob-
lem is also undecidable.

Lemma 2. ILC3 is not computable.

For a formal proof of Lemma 2, see the
Halting Problem [3].

Further research revealed that increas-
ing the order again led to another decid-
able problem, and that it has, in fact, an
implementation identical to Algorithm 1.

Lemma 3. ILC4 is computable.
3 Confused readers are encouraged to consult

Rumsey[1].
4 Acquired legally.
5 Available here: http://jabdownsmash.com/

sigbovik2015/song.mp3

Lemmas 1, 2, and 3 lead us to consider
Theorem 1.

Theorem 1. If n is of the form n = 2k,
then ILCn is decidable; if n is of the form
n = 2k + 1, then ILCn is undecidable.

To test Theorem 1, we created an arbi-
trary order infinite loop checker generator,
and verified the first few trillion orders of
infinite loop checkers. Pseudocode is given
in Algorithm 2, and Table 2 outlines the
fruits of our research up through ILC50. So
far, the results of this test have been consis-
tent with Theorem 1. We leave the formal
proof of Theorem 1 as an exercise to the
reader6.

Algorithm 2 Infinite Loop Checker Gen-
erator
Input: n, a Natural number.
Output: P , a program that is an implemen-

tation of ILCn; False if not possible.
if n is greater than 0 and even then

return ”return False”
else

return False
end if

5 Infinite Order Infinite Loop
Checkers

Building on Definition 3, we can begin to
approach the concept of high-order ILCn
programs theoretically. First, we observe a
new approach to Definition 3 in Remark 1

Remark 1. ILCn for n ≥ 1 is a program
that verifies its input to be ILCn−1.

To cover the case of ILC1, we provide
Definition 4.

Definition 4. ILC0 is an infinite loop.
6 Any completed exercises should be submit-

ted to coders@simons-rock.edu for review.

Table 2: Infinite Loop Checkers
ILC Order Decideable? Runtime
ILC1 False N/A
ILC2 True O

(
1
)

ILC3 False N/A
ILC4 True O

(
1
)

ILC5 False N/A
ILC6 True O

(
1
)

ILC7 False N/A
ILC8 True O

(
1
)

ILC9 False N/A
ILC10 True O

(
1
)

ILC11 False N/A
ILC12 True O

(
1
)

ILC13 False N/A
ILC14 True O

(
1
)

ILC15 False N/A
ILC16 True O

(
1
)

ILC17 False N/A
ILC18 True O

(
1
)

ILC19 False N/A
ILC20 True O

(
1
)

ILC21 False N/A
ILC22 True O

(
1
)

ILC23 False N/A
ILC24 True O

(
1
)

ILC25 False N/A
ILC26 True O

(
1
)

ILC27 False N/A
ILC28 True O

(
1
)

ILC29 False N/A
ILC30 True O

(
1
)

ILC31 False N/A
ILC32 True O

(
1
)

ILC33 False N/A
ILC34 True O

(
1
)

ILC35 False N/A
ILC36 True O

(
1
)

ILC37 False N/A
ILC38 True O

(
1
)

ILC39 False N/A
ILC40 True O

(
1
)

ILC41 False N/A
ILC42 True O

(
1
)

ILC43 False N/A
ILC44 True O

(
1
)

ILC45 False N/A
ILC46 True O

(
1
)

ILC47 False N/A
ILC48 True O

(
1
)

ILC49 False N/A
ILC50 True O

(
1
)

Pseudocode for an implementation of
ILC0 is provided in Algorithm 3, and is
pending runtime analysis.

Algorithm 3 Infinite Loop
while True do

Nothing.
end while

Now consider ILC∞. Remark 1 states
that

ILC∞ verifies ILC∞−1,

but ∞ − 1 = ∞, which implies that

ILC∞ verifies ILC∞

or simply, that an infinite order infinite
loop checker is a program that verifies it-
self. Pseudocode for an implementation of
an infinite order infinite loop checker is pro-
vided in Algorithm 4.

Algorithm 4 Infinite Order Infinite Loop
Checker
Input: P a program.
Output: True if P is equivalent to this pro-

gram; False otherwise.
Generate own source code S
if P = S then

return True
else

return False
end if

6 Additional Results and
Open Problems

Using the research techniques found in Sec-
tions 2, 3, and 4, we consider Definition 5
and suggest Lemmas 4 and 5 as a cursory
exploration of the possibility of infinite or-
der infinite loop checker checkers. We offer
these Lemmas as open problems.

Definition 5.

IOILCCn

{
verifies IOILCCn−1 if n > 0

is ILC∞ if n = 0

Lemma 4. IOILCC1 is not computable.

Lemma 5. IOILCC2 is computable.

The authors would like to explore the
possibility of higher order infinite order in-
finite loop checker checkers themselves, how-
ever their machines are currently still stuck
analyzing the runtime of the infinite loop
algorithm, and it would seem that emulat-
ing C64 hardware on a five year old laptop
is not granting them any favors.

Also, the possibility of exploring check-
ers in multiple dimensions might divulge
more insight on the nature of Turing’s orig-
inal halting problem.

Fig. 1: A possible explanation of multi-
dimensional infinite loop checkers.

References
1. D. J. Rumsey. Statistics For Dummies. For

Dummies, 2nd edition, 2011.
2. Naomi Saphra. The dumping lemma: As-

sessing regularity. SIGBOVIK 2014, pages
51–52, April 2014.

3. A. M. Turing. On computable num-
bers, with an application to the entschei-
dungsproblem. Proceedings of the Lon-
don Mathematical Society, s2-42(1):230–
265, 1937.

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2015 Paper Review
Paper 13: Beyond the Halting Problem

Stefan Muller, Carnegie Mellon University
Rating: ∞ (strong strong strong strong strong strong strong strong strong strong strong
Confidence: 4/4

This is a very good paper. Allow me to explain my reasoning. Alan Turing’s famous “On the

Computable Numbers, with an Application to the Entscheidungsproblem” was a good paper, and

this paper generalizes its findings to order∞, which must make this paper∞ times better. As we

all know,∞× good = ∞, so the goodness of this paper is∞.

On the other hand, I was slightly confused by Section 6. Judging by Figure 1 (which was the

only part of this section I read), this section discusses multi-dimensional infinite loop checkers, an

amusing game played by homotopy theorists in which players must reduce their opponents’ loops

to points in an infinite, multi-dimensional non-Euclidean topological space. This is an excellent

topic of study, but I don’t see the relevance to the rest of the paper. Unless the authors have

constructed an algorithm to verify programs which validate possible moves in multi-dimensional

infinite loop checkers, since such a “multi-dimensional infinite loop checkers checker checker”

would be a valuable contribution. In this latter case, the goodness of the paper is doubled to ∞,
otherwise it is decreased slightly to∞− confusing section = ∞.

One request I would make of the authors is to not further discuss the subject of Alan Turing with

me until I finish reading his biography, as I’m only on Chapter 3 and don’t want to be told how it

ends. Judging by his healthy lifestyle and the importance of his scientific contributions, I can only

assume he lived happily to a ripe old age and was revered by all as the King of Computers.

Bashing Haskell:
Reimplementing the Parsec Library Inside the Unix Shell

Functional Imperative Pearl

Mike Izbicki

University of California Riverside

mike@izbicki.me

Abstract
We introduce the Parsed suite of Unix command line tools. Parsed
improves the classic sed program by incorporating ideas from the
popular parsec Haskell library. In particular, the Unix pipe op-
erator (|) corresponds exactly to the Applicative bind (*>) in
Haskell. The resulting syntax is both intuitive and powerful. The
original syntax used by sed can match only regular languages; but
our improved syntax can match any context sensitive language.

Keywords unix, sed, parsing, parsec, Haskell, applicative, monad

1. Introduction
The stream editor (sed) is one of the oldest and most widely used
Unix utilities. Unfortunately, it is a monolithic beast. It fails to live
up to the Unix philosophy of “do one thing well.” The problem is
that sed tries to implement all regular expression features in a single
executable. This ruins composibility. For example, let’s say I have a
simple sed command for deleting email addresses. Something like:

sed ’s/[a-zA-Z0-9.]@[a-zA-Z0-9.]/xxx@xxx/g’

But in the file I’m working on, I only want to delete an email
address if the line starts with the words CONFIDENTIAL. This
should not be a hard task. We should be able to write another
sed command for finding lines that begin with CONFIDENTIAL,
then combine these two commands. But this is not possible using
standard techniques. To solve our problem, we must rewrite an
entirely new sed command from scratch. Within that command, we
copy-and-paste our previously tested command:

sed ’s/(CONFIDENTIAL.*)[a-zA-Z0-9.]@[a-zA-Z0-9.]/
$1xxx@xxx/g’

Real world experience suggests that this practice is a leading source
of bugs for the modern sed programmer.1 In this paper, we simplify
shell based parsing by introducing techniques from functional pro-
gramming into the Unix shell. Our Parsed library combines the best
of sed with Haskell’s excellent Parsec library.
Parsec is a simple Haskell library that makes parsing easy and

fun. It provides a small set of simple higher order functions called
combinators. By combining these combinators, we can create pro-
grams capable of parsing complex grammars. The Parsed library
recreates these combinators within the Unix terminal. In particu-
lar, each combinator corresponds to either a shell script or shell
function. We then combine these combinators using the standard
Unix pipe. There are three combinators of particular importance:
match, some, and choice. With these combinators, we can
match any regular expression. But unlike sed, our combinators can

1 Can you spot the bug in the command?

take advantage of the shell’s built-in expressivity to match any con-
text sensitive language!
In the remainder of this paper, we give a brief tutorial on how

to construct your own parsers using Parsed. We recommend that
you install Parsed and follow along with our examples. Installing is
easy. Just clone the git repo:

$ git clone https://github.com/mikeizbicki/parsed

And add the resulting parsed/scripts folder to your PATH:

$ export PATH="$(pwd)/parsed/scripts:$PATH"

That’s it! You’re now ready to start parsing!

2. Matching strings
The most basic combinator is match. It’s easiest to see how it
works by example. Throughout this tutorial, we will first present
the examples, and then their explanation.

$ match hello <<< "goodbye"
$ echo $?
1

match takes a single command line argument, which is the string
our parser is trying to match. In the above example, this is the
string hello. The text to be parsed comes from stdin. In the above
example, we use bash’s built-in <<< syntax, which redirects the
contents of the following string (goodbye) to stdin. The exit code
of the previously run program is stored in the shell variable $?. In
the above example, our parser failed (the string hello does not
match the string goodbye), so $? contains a non-zero value.
Now let’s see what a successful parse looks like:

$ match hello <<< "hello"
hello
$ echo $?
0

When match succeeds, the matched text gets printed to stderr.
This is where the output string hello comes from in the above
example. Since parsing succeeded, match returned an exit code of
0. As you can see, match is a very simple parser. It is normally
combined with other parsers.

3. Combining parsers
We combine parsers using the standard unix pipe (|). For example,
let’s create a parser that first matches the string hello and then
matches the string world:

$ (match hello | match world) <<< "helloworld"
helloworld
$ echo $?
0

Script 1 match

#!/bin/sh

check for the correct number of arguments
if [-z "$1"] || [! -z "$2"]; then

echo "match requires exactly one argument"
exit 255

fi

When reading from stdin, the shell ignores the
contents of the IFS variable. By default,
this is set to whitespace. In order to be
able to read whitespace, we must set IFS to
nothing.

IFS=’’

read in exactly as some characters as are in
the first command line argument

read -rn "${#1}" in

if we parse correctly
if ["$1" = "$in"]; then

print the parsed string to stderr
echo -n "$in" 1>&2

forward the unparsed contents of stdin
cat

signal that parsing succeeded
exit 0

else
parsing failed
exit 1

fi

Parsing succeeds for both calls to match, so parsing succeeds
overall. To see how piping combines parsers, we need to take a
more careful look at the match script. Like all combinators in the
Parsed library, match is written in POSIX compliant shell. The
full source code is shown in Script 1 above.
We’ve already seen that when match succeeds, the matched

string is printed to stderr; but additionally, any unparsed text is
printed to stdout. This is demonstrated by the following two tests:

$ match hello <<< "helloworld" 1> /dev/null
hello
$ match hello <<< "helloworld" 2> /dev/null
world

As a reminder, by putting a number in front of the output redirection
operator >, we redirect the contents of that file descriptor to the
specified file. File descriptor 1 corresponds to stdout and 2 to stderr.
So the first command above discards stdout; it shows only the text
that was successfully parsed. The second command above discards
stderr; it shows only the text that is sent to any subsequent parsers.
It is possible for the first parser to succeed and the second to

fail. In this case, the succeeding parsers still print their output to
stderr, but parsing fails overall:

$ (match hello | match world) <<< "hellogoodbye"
hello
$ echo $?
1

Concatenating two match parsers is relatively uninteresting.
We could have just concatenated the arguments to match! So now
let’s introduce a new combinator called eofwhich matches the end
of file. That is, eof will succeed only if the stdin buffer has been

Script 2 eof

#!/bin/sh

Try to read a single character into the
variable $next. If next is empty, we’re at
the end of file, so parsing succeeds.

IFS=
read -n 1 next
if [-z $next]; then exit 0; else exit 1; fi

closed because there is no more input to parse. The source code for
eof is much simpler than for match, and is shown in Script 2.
These next two examples demonstrate the effect of the eof

combinator. First, we try matching the string hello on the input
hellohello:

$ match hello <<< "hellohello"
hellohello
$ echo $?
0

Parsing succeeds; we print the contents of the parsed text (hello)
to stderr; and we print the remaining content to be parsed (hello)
to stdout. If, however, we apply the eof combinator:

$ (match hello | eof) <<< "hellohello"
hello
$ echo $?
1

Parsing now fails because the input was too long. Shortening the
input again causes parsing to succeed:

$ (match hello | eof) <<< "hello"
hello
$ echo $?
0

Now that we know how to combine two simple parsers, we’re ready
for some more complex parsers.

4. Iterating some parsers
The some combinator lets us apply a parser zero or more times.
some corresponds to the Kleene star (*) operator used in sed and
most other regular expression tools. some takes a single command
line argument, which is the parser we will be applying zero or more
times. For example:

$ (some "match hello" | eof) <<< "hellohello"
hellohello
$ echo $?
0

The above example succeeds because the some "match hello"
parser consumes both occurrences of hello. As already men-
tioned, some need not consume any input:

$ some "match hello" <<< ""
$ echo $?
0
$ some "match hello" <<< "goodbye"
$ echo $?
0

In fact, the some used by itself can never fail—it will always
just parse the empty string. In order to force failures, we must
concatenate some with another parser like so:

$ (some "match hello" | eof) <<< "goodbye"
$ echo $?
1

Script 3 some

#!/bin/sh

check for the correct number of arguments
if [-z "$1"] || [! -z "$2"]; then

echo "many requires exactly one argument"
exit 255

fi

put the contents of stdin into a variable so we
can check if it’s empty

stdin=$(cat)

if we still have input and parsing succeeded
if [! -z "$stdin"] && stdout=‘eval "$1" <<< "

$stdin"‘; then

run this parser again
"$0" "$1" <<< "$stdout"

else

stop running this parser
cat <<< "$stdin"

fi

Unfortunately, the some combinator breaks the ability to use
POSIX pipes for concatenation as we did above. Consider this
example:

$ (match hello | some "match hello") <<< ""
$ echo $?
0

Our first match parser failed because there was no input. Then we
call the some parser. There is still no input, so some succeeds.
Since some was the last command to execute, $? contains its exit
code which is 0.
The problem is that the standard POSIX $? variable has the

wrong behavior. We need a variable that will report if any of the
commands in the pipe chain failed. There is no POSIX compliant
way to do this. But more modern shells like bash offer a simple fix.
The command

$ set -o pipefail

modifies the semantics of the $? variable so that it contains zero
only if all commands in the pipe chain succeed; otherwise, it con-
tains the exit code of the first process to exit with non-zero status.
This command need only be run once per bash session. There-
after, we can rerun the incorrect example above to get the correct
output:

$ (match hello | some "match hello") <<< ""
$ echo $?
1

The code for the some combinator is shown in Script 3 above.

5. Custom combinatorial explosion
Most regular expression libraries offer a primitive combinator +
that matches one or more occurrences of a previous parser. Parsed
does not have such a primitive operator because it is easy to build
it using only the | and some combinators. We call the resulting
operator many, and we implement it by creating a bash function:

$ many() { $1 | some "$1"; }

Recall that the $1 variable will contain the first parameter to the
many function. In this case, that parameter must be a parser. We

Script 4 many

#!/bin/bash
set -o pipefail
$1 | some "$1"
exit $?

can use our new combinator to simplify the examples from the
previous section:

$ many "match hello" <<< ""
$ echo $?
1
$ many "match hello" <<< "hello"
hello
$ echo $?
0

Unfortunately, Bash functions do not last between sessions. If we
want something more permanent, we can create a script file instead.
In fact, the many combinator is so useful that it comes built-in to
the Parsed library. You can find its source code in Script 4 above.
When the script file starts, it will not inherit the settings of its parent
process in the same way that our many function did. Therefore, we
must specifically re-setup our non-POSIX pipes at the beginning of
every script that uses them.

6. The program of choice
The last combintor we need for parsing regular languages is called
choice. The match and many combinators required exactly one
input, but choice takes an arbitrary number of input parameters.
Each parameter is a parser. For each of these parsers, choice
applies it to stdin. If it succeeds, then choice returns success.
If it fails, then choice goes on to the next parameter. If all parsers
fail, then choice fails as well.
Here’s a simple example using just the match combinator:

$ choice "match hello" "match hola" <<< hello
hello
$ echo $?
0
$ choice "match hello" "match hola" <<< hola
hola
$ echo $?
0
$ choice "match hello" "match hola" <<< goodbye
$ echo $?
1

Our parser succeeds when the input was either hello or hola,
but fails on any other input.

7. Free your context
In the intro we claimed that Parsed is strictly more powerful than
sed. We now demonstrate this point by parsing a context free
language. Sed only supports regular expressions. The reason Parsed
has this extra power is because we can define our own recursive
parsers using standard shell syntax.
To demonstrate this capability, we will write a parser that checks

for balanaced parenthesis. First, let’s define a small combinator
paren that takes a single parser as an argument and creates a
parser that succeeds only when the parameter is surrounded by
parentheses:

$ paren() { match "(" | $1 | match ")"; }

And let’s test it:

Script 5 choice

#!/bin/bash

We need to store the contents of stdin
explicitly to a file. When we call one of
our candidate parsers, it will consume some
of the input form stdin. We need to restore
that input before calling the next parser.

stdin=$(tempfile)
cat >"$stdin"

If stdin is empty, then we’re done with
recursion; parsing succeeded

if [! -s "$stdin"]; then
exit 0

fi

For similar reasons, we’ll need to store the
output of our parsers.

stdout=$(tempfile)
stderr=$(tempfile)

For each parser passed in as a command line arg
for cmd in "$@"; do

Run the parser; if it succeeds, then pass
on its results
if $(eval "$cmd" <"$stdin" 1>"$stdout" 2>"
$stderr") ; then

cat "$stderr" >&2
cat "$stdout"
exit 0

fi
done

All parsers failed, so we failed
exit 1

$ paren "match hello" <<< "hello"
$ echo $?
1
$ paren "match hello" <<< "(hello)"
(hello)
$ echo $?
0

We will use paren to write a combinator maybeparen that ac-
cepts whether or not the parameter parser is surrounded by paren-
thesis. Here is a reasonable first attempt:

$ maybeparen() { choice "$1" "paren $1"; }

Unfortunately, this doesn’t work due to scoping issues with bash.
When we run our command, we get an error:

$ maybeparen "match a" <<< "(a)"
choice: line 7: paren: command not found

We get this error because the choice combinator is its own shell
script. When this script gets executed, a new shell process starts
with a clean set of environment variables. In the context of this
subprocess, the paren function we created above doesn’t exist.
There are two ways to solve this problem. The simplest is to use

the following bash-specific syntax:

$ export -f paren

This command tells the running bash shell that any subshells it
spawns should also have access to the paren function. Now when
we try running our previous tests:

Script 6 parens

#!/bin/bash
choice "$1" "match ’(’ | par \"$1\" | match ’)’"

$ maybeparen "match a" <<< "a"
a
$ echo $?
0
$ maybeparen "match a" <<< "(a)"
$ echo $?
1

We still get a parse error! What’s happening is that we actually
defined the maybeparen function incorrectly. Here is the correct
definition:

$ maybeparen() { choice "$1" "paren \"$1\""; }

The only difference is that the correct definition surrounds our $1
parameter with quotation marks. This ensures that the entire value
of the variable gets passed as a single parameter to the paren
combinator. Because these quotation marks are within quotation
marks, they must be escaped with backslashes. Arrgh!
We are now ready to define a combinator parens that matches

any number of balanced parentheses. In order to avoid the need
for a set of triply nested quotation marks, we will put the parens
combinator within a script file (instead of a function) and we will
manually inline our call to the paren combinator. Script 6 above
contains the final result. And now let’s test our creation:

$ par "match a" <<< "(((a)))"
(((a)))
$ echo $?
0
$ par "match a" <<< "(((b)))"
$ echo $?
1
$ par "match a" <<< "(((a"
$ echo $?
1

We’ve successfully parsed a context free language :)

8. Discussion
This is only a very brief introduction to the capabilities of our
Parsed library. Additional under-documented features include: (1)
We can use shell variables to simulate Haskell’s Monad type class.
In particular, the shell code:

var=$(func)

is equivalent to the haskell do-notation code:

var <- func

In fact, all shell commands can be thought of as being within the
IO monad wrapped within the ParsecT transformer. This leads
us to our next under-documented feature. (2) Arbitrary commands
can be used in parsers. Want to punish your users when they make
syntax errors? Just add an rm -rf * at the appropriate place in
your combinators.

References
[1] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser

combinators for the real world. 2002.

Programming Language Fan Fiction (extended abstract)

Stefan Muller, Carnegie Mellon University

Programming language theory and design is an area of research in which authors frequently make design
decisions. For example, authors might choose between call-by-name and call-by value; simply typed, depen-
dently typed and untyped; intensional and extensional; predicative and impredicative; C-style syntax and
ML-style syntax; statically and dynamically typed; garbage-collected and useless, etc. Inevitably, readers
of these papers wonder what would happen if one of these design decisions were made differently. This is
not a feature unique to programming languages; fan fiction is a popular process in which devotees of a work
of fiction reimagine the work in their own way. It thus seems that programming languages and fan fiction
could be combined to form a large body of new ideas, and it is the author’s opinion that SIGBOVIK is a
fine venue for such ideas.
Here, we present a number of avenues for development of programming language fan fiction. Some of

these areas appear novel; in others, some work has already been done which can now be drawn under the
umbrella of programming language fan fiction.

• Alternate notions of type membership. Type theories typically define the canonical forms of a
particular type, but occasionally variations on this canon are possible. For example, in a strict language,
canonical forms of pair type are (v1, v2) where v1 and v2 are themselves irreducible. Proponents
of laziness might instead consider values of pair type to be (e1, e2) where e1 and e2 are arbitrary
expressions. Expressions of a type which are considered by fans of a type theory, but not by the
original presentation, to be irreducible are known as headcanonical forms or, if accepted by a large
fanbase, fanonical forms.1

• Hacking new features into old languages. A common source of complaints about programming
languages comes from the fact that a particular feature isn’t present in a particular language. This
complaint generally takes the form “I’d consider using 〈language〉 if only it had 〈feature〉!” Examples
include:

– Statically-typed Python2

– Garbage-collected C [1]

– Concurrent ML [2]

– LaTeX with types

– LaTeX with decent syntax

– LaTeX with any features at all

Some of the above are considered conservative extensions. Often, however, adding a particular feature
to a particular language breaks a desired soundness property, makes type checking undecidable or
causes various other havoc. This is generally not considered a problem in fan fiction, so have at it.

• Meta-properties of fan fiction. One interesting area of future research is the application of pro-
gramming language techniques to the study of fan fiction. For example, fan fiction can be “Kripked” (a
reference to author Eric Kripke) if it is validated by new canon. However, this assumes that the devel-
opment of canon is linear. Often in computer science research, however, new developments will build

1Note that this terminology is itself subject to debate. Confusingly, some authors of type theory fan fiction believe that the
latter forms should be known as headcanonical forms and the former should be weak headcanonical forms.

2https://github.com/illume/static checking python

off of older ones in a nonlinear, branching fashion. This leads to the question of whether programming
language fan fiction can be “Kripked” (a reference to logician Saul Kripke) in a way consistent with
nonlinear reachability graphs.

• Fan fiction of type theory itself. Fans can make fan fiction not just of particular programming
languages or type theories, but of the subject of type theory itself. In important prior work in this
area, languages have been developed which are clearly based upon fan fiction-style manipulations of
type theory itself3.

References

[1] HansJ. Boehm and Paul F. Dubois. Dynamic memory allocation and garbage collection. Computers in
Physics, 9(3):297–303, 1995.

[2] John H. Reppy. CML: A higher-order concurrent language. In Proceedings of the SIGPLAN 1991
Conference on Programming Language Design and Implementation, pages 293–305, New York, NY, June
1991. ACM.

3https://www.haskell.org

� � �

o∇o

Acronymy: A Bidirectional Dictionary

https://dwrensha.ws/acronymy

David Renshaw

Dictionaries are useful language reference guides that associate words with
meanings, but in their traditional form they only solve half of the problem. They
can map a given word to a definition, but they do not work in the opposite direc-
tion. What if you know a word’s definition, but can’t remember the word itself?
Acronymy is a new dictionary for American English that aims to remedy this
situation. Every definition in Acronymy can be efficiently and robustly mapped
back to the word it defines. Even if you only remember part of a definition,
it will help you remember the word! The trick is that Acronymy defines every
word as an acronym. That is, the initial letters of the definition spell out the
defined word. For example, “scallop” might be defined as “sea creature adduc-
tor lying limply on plate,” and “random” might be defined as “results are not
deterministic or meditated.” Acronymy is not yet complete, however. It needs
your help! You can browse its current state and contribute new definitions by
visiting https://dwrensha.ws/acronymy.

Another article that makes bibliometric
analysis a bit harder

J. Pfeffer
Carnegie Mellon University

J. Pfeffer
Stanford University

April 1, 2015

There are many authors publishing many articles in a wide variety of scientific fields.
Some of these researchers analyze the collaboration among researchers by looking at co-
publishing or citation behavior. ”A key challenge when working with publication data
is to disambiguate different authors carrying the same name, as accidentally merging
multiple authors can distort results massively. This challenge is even harder when an
initial is used in place of a first name. The goal of this article is to exacerbate this
challenge and to make bibliometric analysis harder still.

1 Introduction

Researchers publish a lot, on many topics. They publish about people (J. Pfeffer, 1998; al. et J.
Pfeffer, 1978; J. Pfeffer, 1994), organizations (J. Pfeffer et al., 2003; J. Pfeffer, 1992; J. Pfeffer et
al., 1981), networks (J. Pfeffer et al., 2012; al. et J. Pfeffer, 2012; J. Pfeffer et al., 2011), time lords
(al. et J. Pfeffer, 2013), as well as far more complicated topics (al. et J. Pfeffer, 1986; al. et J.
Pfeffer et al., 1997). More recently, researchers are more and more interested in social media stuff
(al. et J. Pfeffer, 2014; J. Pfeffer et al., 2014; al. et J. Pfeffer, 2014; al. et J. Pfeffer et al., 2013;
J. Pfeffer et al., 2012).

Figure 1: Research products by year for “J Pfeffer” on Google Scholar. There are an additional
1,660 results from year 0 to year 1989, resulting cumulatively in about 10,850 research
products.

Intriguingly, publishing a lot is neither a new nor a completed phenomenon. As a matter of
fact, J. Pfeffer (as well as others) has been creating more and more research products every year
(see Figure 1). However, recursive citations can be seen as contemporary activity (J. Pfeffer & J.
Pfeffer, 2015).

The contributions of our work are:

• We show that co-publishing analysis can be quite hard;
• We make co-publishing analysis even harder;
• By adding some random J. Pfeffer references to our paper, we create very interesting artifacts
for future co-citation analysis.

2 Some Analysis

In order to show a network visualization and a ranking, we extracted the first 1,000 results from a
Google Scholar search with “J. Pfeffer” and constructed a network (al. et J. Pfeffer, 2012). Nodes
in this network represent people, i.e. J. Pfeffer and others. Links connect these nodes in case of at
least one shared publication. The result can be seen in Figure 2(a). Authors that share multiple
publications are connected by a thicker line.

To quantify the importance of J. Pfeffer in this network, we calculated betweenness centrality
and present the very obvious results in Figure 2(b).

3 Outlook

To assess the importance of this issue for bibliometric analyses of the years to come, we estimate
future levels of activity based on the previous scientific productivity of J. Pfeffer. Using data from

(a) Impressive Collaboration Network (b) Intimidating Ranking

Figure 2: The pretty impressive collaboration network of J. Pfeffer, based on top 1,000 results of
a Google Scholar search as well as betweenness centrality ranking in this network. Out
of respect to the co-authors of J. Pfeffer, we keep quiet about their identities.

Figure 3: Estimated future productivity of “J Pfeffer” by year based on exponential growth fitted
on historic data.

Figure 1, we first fit an exponential function to describe historic activity. It is important to notice
that the following exponential function almost perfectly (R2 = 0.9471) describes our historic data:

y = 88.43e0.0919∗(year−1989)

.

Figure 3 shows the full extend of the J. Pfeffer problem. Assuming a continued exponential
growth, we expect about 270,000 cumulative research products by the year 2050.

4 Conclusions

It is okay to have a common family name and to give your child a boring first name. However, please
consider one or more middle names to give her or him a head start in terms of an unmistakable
identity. Exemplary behavior was shown by the parents of J.M. Pfeffer (J.M. Pfeffer et al., 2012;
J.M. Pfeffer et al., 2013) and J.T. Pfeffer (J.T. Pfeffer, 1974; J.T. Pfeffer, 1992). In countries in
which ∼100 million people share the same family name, we recommend five middle names with at
least two being picked completely at random.

5 Acknowledgments

The authors will always be grateful to Google Scholar for indexing this article. Without their
greedy literature gathering approach, our work would be preposterous.

References

Castillo, C., El-Haddad, M., Pfeffer, J., and Stempeck, M. (2014). Characterizing the life cycle
of online news stories using social media reactions. Proceedings of the 17th ACM conference on
Computer supported cooperative work and social computing, 211-223.

Columbus, D. and Pfeffer, J. (2013). 50 years of team tardis. Whotopia 25, 34-37.

Hennig, M., Brandes, U., Pfeffer, J., and Mergel, I. (2012). Studying social networks: A guide to
empirical research. Campus Verlag/University of Chicago Press.

Morstatter, F., Pfeffer, J., Liu, H., and Carley, K. M. (2013). Is the sample good enough? com-
paring data from twitter streaming api with twitter firehose. Proceedings of ICWSM, 2013.

Pfeffer, J. (1974). Temperature effects on anaerobic fermentation of domestic refuse. Biotechnology
and Bioengineering, 16(6):771–787.

Pfeffer, J. (1992a). Managing with power: Politics and influence in organizations. Harvard Business
Press.

Pfeffer, J. (1994). Competitive advantage through people. California management review 36 (2),
9-28.

Pfeffer, J. (1998). The human equation: Building profits by putting people first. Harvard Business
Press.

Pfeffer, J. and Carley, K. M. (2011). Modeling and calibrating real world interpersonal networks.
Network Science Workshop (NSW), 2011 IEEE, 9-16.

Pfeffer, J. and Carley, K. M. (2012a). k-centralities: Local approximations of global measures
based on shortest paths. Proceedings of the 21st international conference companion on World
Wide Web ...

Pfeffer, J. and Carley, K. M. (2012b). Social networks, social media, social change. Proceedings of
the 2nd International Conference on Cross-Cultural Decision Making, 273-282.

Pfeffer, J. and Lammerding, C. (1981). Power in organizations. Pitman.

Pfeffer, J. and Pfeffer, J. (2015). Another article that makes bibliometric analysis a bit harder.
Proceedings of the 9th SIGBOVIK conference.

Pfeffer, J. and Salancik, G. R. (2003). The external control of organizations: A resource dependence
perspective. Stanford University Press.

Pfeffer, J., Zorbach, T., and Carley, K. M. (2014). Understanding online firestorms: Negative
word-of-mouth dynamics in social media networks. Journal of Marketing Communications 20
(1-2), 117-128.

Pfeffer, J. M., Moynihan, P., Clarke, C. A., and Clarke, A. J. (2012). Control of lytic transglyco-
sylase activity within bacterial cell walls. Caister Academic Press, Norfolk, UK, pp. 55-68.

Pfeffer, J. M., Weadge, J., and Clarke, A. (2013). Mechanism of action of neisseria gonorrhoeae
o-acetylpeptidoglycan esterase, an sgnh serine esterase. The Journal of Biological Chemistry,
288, 2605-2613.

Pfeffer, J. T. (1992b). Solid waste management engineering. Prentice Hall.

Ruths, D. and Pfeffer, J. (2014). Social media for large studies of behavior. Science 346 (6213),
1063-1064.

Salancik, G. R. and Pfeffer, J. (1978). A social information processing approach to job attitudes
and task design. Administrative science quarterly, 224-253.

Comment: SIGBOVIK Should Ban Conclusions

Jim McCann∗

TCHOW llc

It has recently come to my attention that some el-

ements of the scientific community, distressed by the

mis-use of inferential statistics to support weak results

in their fields, have taken drastic measures. Particularly

bold has been the editorial board of the BASP journal,

which have decided to ban p-values altogether†.

In fact, any and all types of inferential statistics –

including confidence intervals and F -values – may no
longer be included in BASP publications.

In other words, from this point forward, BASP pa-

pers will only be allowed to include results that “kind of

look significant”, but haven’t been vetted by any statis-

tical processes.‡ I imagine this will also include studies
where the cohorts “are not quite the same if you sort of

look at this graph, I guess.”

This is a bold stance, and I think we, as ACHmem-

bers, would be remiss if we were to take a stance any

less bold. Which is why I propose that SIGBOVIK –

from this day forward – should ban conclusions.

Just as the BASP editorial board has so rightly ob-

served that p-values can be flawed by mis-application
of statistical mathematics, so too can conclusions be

flawed by the mis-application of reasoning. In recog-

nition of this, starting in 2016, I strongly suggest

that any papers under review for SIGBOVIK (or other

ACH conferences) that contain conclusions, arguments,

logic, reasoning, or results be summarily rejected.

Of course, even this provision may not be suffi-

cient, since readers may draw their own conclusions

from any suggestions, statements, or data presented

by authors. Thus, I suggest a phased plan to remove

any potential of readers being mislead, with increasing

strictures over the subsequent four years to allow au-

thors to adapt their style (and to shovel any unpublished

old results out while the shovelling is good).

∗e-mail: ix@tchow.com
†http://www.nature.com/news/psychology-journal-bans-p-

values-1.17001
‡Technically, Beysian statistics are allowable on a case-by-case

basis, though prior evidence suggests that they are unlikely to see

the light of day.

Plan:

2016 Conclusions banned.

2017 SIGBOVIK papers should no longer be allowed

to contain data, since errors in data measurement

might lead to improper conclusions on the part of

the reader. (Though, thankfully, not on the part of

the author, owning to 2016’s ban.)

2018 The editorial board of SIGBOVIK should addi-

tionally summarily reject any papers that contain

words other than in the title. Words are the pri-

mary component of lies, and the goal of science is

truth, not lies. I, for one, welcome a more figure-

driven publication style.

2019 In the following year, titles will also be banned.

Papers will consist of wordless pictures, possibly

graphs. (Which should have the added benefit of

stimulating research into indexing and search on a

wordless corpus.)

2020 Finally, in 2020, the ACH can take the ultimate

step of banning all papers from SIGBOVIK, creat-

ing the world’s second fully-correct journal. This

will be an exciting time for science.

Fellow ACH members, I hope you will join me in

urging the editorial board of SIGBOVIK to enact this

plan. While it may seem drastic, it is the only way for

the SIGBOVIK community to continue hold itself to

the high standards of quality for which is has become

known.

Yours,

James McCann, Ph.D.

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2015 Paper Review
Paper 15: Comment:
SIGBOVIK Should Ban Conclusions

I. Ohnli-Skymmdit
Rating: 2 (weak reject)
Confidence: 2/4

This paper argues that conclusions are a misapplication of statistical mathematics, and therefore

should be required in future years of BASP.

The author did not summarize his points at the end of the paper, so I had a hard time following the

argument. The timeline in the right column would have been easier to read if it used fewer words.

The Portmantout

Dr. Tom Murphy VII Ph.D.∗

1 April 2015

1 Introduction

A portmanteau, henceforewith non-italicized, is a stringin’-together of two words to make a new word, like “brogrammer” (brother +
programmer; a programmer who is your brother), “hupset” (hungry + upset; a bit more passive than hangry), or “webinar” (web +
nerd). Portmanteaus were invented by Lewis Carroll, the Jabberwock of wordplay.
It is natural to think of generalizations of the portmanteau, such as the portmantrois,1 (itself a portmanteau of portmanteau +

trois, French-language for three) the human-centipedification of three words, such as “anachillaxis” (anaphylaxis + chill + relax; a
severe allergic reaction to idleness) or “brogrammermaid” (brother + programmer + mermaid; a programmer who is your brother and
a mermaid).
In this paper I present the world’s first (?)23 portmantout, a portmanteau of all English-language words (tout means “all” in

French-language). I also considered calling this a portmantotal, portmantotale, etc., as well as portmantoutal (a portmantroix of the
first three) or even portmantoutale. You kind of see how this can get out of hand. The word is 630,408 letters long and contains all
108,709 words in a particular wordlist called wordlist.asc.4 Even though nobody can really agree what all the words in English
are, the technique used to generate this portmantout should work for most very long word lists, although we will see in Section 3.2
that a handful of words are very important.
Since the word itself is 11 pages long in 4pt type with .75 linespacing, and this SIGBOVIK proceedings is positively overfull hbox

with content, we should probably get on with it.

2 Computationalizing “portmanteau”

A real portmanteau is usually phonetic, like “portmantotally” is about the sound of “—teau” being the same as “to—”. It’s also
not unusual for part of the word to be completely dropped, as in “chillax”, which drops the “re—” from relax. They are also usually
clever or meaningful. For the sake of computing a portmantout, we need to make some rules about what it is, and it can’t require
cleverness or semantic/phonemic interpretation of words if I’m going to start and complete this project on the day of the SIGBOVIK
deadline.

Generalized portmanteau. For a set of strings L, a string s is a generalized portmanteau if the entire string can be covered
by strings in L. A cover is a set of word occurrences W = 〈m,n〉, where sm–sn (the substring starting at offset m and ending at n,
inclusive) is in L, and, taken sorted by the m component, Wi.n >=Wi+1.m for each i in range. For example,

This string can be covered by rewrote, temper, and red, so it is a generalized portmanteau if these three strings are in L. (Spoiler
alert: L is English-language, so they are.) Importantly, the covering strings overlap: rewro, temper and ed on their own would not
cover this string (and rewro is not a word). Therefore, we cannot simply concatenate the entire dictionary.

Portmantout. A generalized portmanteau is a portmantout if it contains every string in L as a substring. The words need not
be in its cover, as there may be muliple covers (In fact I conspicuously did not choose the simpler one rewrote + tempered.) Other
words, like wrote, rote and rot are in there too “for free”, even though they may not be able to participate in a legal cover.
A word may appear multiple times; we just have to get them all. This is fairly unavoidable—the word a appears 60,374 times in

the portmantout. Perhaps more surprising is that the word iraq appears 315 times.

∗Copyright 2015 the Regents of the Wikiplia Foundation. Appears in SIGBOVIK 2015 with the etaoin shrdlu of the Association for Computational
Heresy; IEEEEEE! press, Verlag-Verlag volume no. 0x40-2A. BTC 0.00

1Graham Smith, personal communication.
2I did a couple Google searches; seems good enough.
3Enjoy source code: http://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/portmantout
4Tom Murphy VII, “What words ought to exist?”, SIGBOVIK 2011

Note that a “generalized” portmanteau does not actually include most colloquial portmanteaus; brogrammer cannot be covered
since we dropped the “p—” in programmer. brogrammar is also not a generalized portmanteau since bro and grammar do not overlap,
yo, but I think it would be accepted colloquially by most dudes. Disrupt!

3 Generating a portmantout

It’s fairly straightforward handwaving to see that generating the shortest portmantout is NP-complete. Seeing that it is in NP is
easy; we just need to check the cover and look up all the substrings, which is clearly polynomial. It is probably NP-hard because the
traveling salesman problem can be reduced to it; for each node in the graph, generate a two-symbol word xy where x and y are fresh
symbols; for each edge between cities xiyi and xjyj generate a string yiu

wxj , where u is also a fresh symbol repeated w times, the
cost of the edge. This allows us only to join two city words by using a corresponding edge word.5

OK but good news! Since it’s NP-complete, we know that we can come up with a solution that’s both non-optimal and slow, and
we can still feel pretty good about it. We proceed in two steps: Generating particles eagerly, and then joining them together.

3.1 Generating particles

For the first step, we load up all the words, and insert each word into a multimap, keyed by each of its non-empty prefixes. We then
start by initializing a particle from any word; we choose portmanteau to start, obviously. Then, repeatedly:

Check each suffix of the particle in descending length-order,

– If we have a word that has not already been used, strip the suffix from its start and append the remainder to the particle

Otherwise, emit the particle and start a new one with any unused word.

As an additional optimization, we discard words that are substrings of any particle. This search makes the program much slower,
but it produces a much more efficient portmantout.
This always makes progress, using up one word at each step: We either append it to our current particle, or we start a new particle

with a word. The particles are all generalized portmanteaus by construction, because each added word has non-empty overlap with the
previous one. Here’s an example particle: overmagnifyingearlesshrimpierabbinicalcicadaeratorshrimpiestandardizableaseholdershrimpinge-
mentshrimpsychedelically (overmagnifying + gearless + shrimpier + rabbinical + calc + cicada + aerators + shrimpiest + standardizable
+ leaseholders + shrimping + impingements + shrimps + psychedelically; presumably having something to do with shrimp).
At this point, we have about 38,000 particles, many of which are a single word. English contains many imbalances, like vastly

more words ending with “—y” (10,071) than beginning “y—” (only 338), so it is not hard to see how we may get stuck with no new
words to add to a particle. We’ve also used each word only once, and locally maximized the amount of overlap. If we can join these
particles together in a valid way, we’ll have a portmantout.

3.2 Joining particles

Since we’ve already used every word, and, by construction, these particles cannot be adjoined directly, we know we will need to reuse
some words to join them together. A simple way to do this is to construct a table of size 262 that for every pair of letters a and b,
contains a short word that starts with a and ends with b. 86% of the table entries can be filled in, but some letters are very tricky:
For example, almost no words end with “q” (we have only colloq and iraq in our dictionary), and there are no words that start with
“v” and end with “f”. Fortunately, if we consider all two-word (generalized) portmanteaus, using basically the same algorithm as in
Section 3.1, we can fill the table completely (Figure 1).
It is lucky for the existence of words like iraq; they are used for many of the entries in the “q” column. In fact, without a handful

of such words, it might be the case that English would not permit a portmantotal! There are probably some less irregular languages
that cannot achieve this lexical feat. :’-(
This table alone would allow us a very simple algorithm for generating a valid portmantotal: Just take words from the dictionary

and concatenate them, but when putting e.g. tv and farm together, we use the v–f linker vetof (veto + of) from the table. We can’t
ever fail! However, this would produce a portmantout that’s bigger than the dictionary itself, which isn’t very economical. Rather
than use the whole dictionary this way, we instead join all of the 38,000 particles from the previous section. These are much more
compact. And now we are done!

4 The portmantout

This portmantout is 630,408 letters long; there are 931,823 total letters in the dictionary so this is a compresion ratio of 1.47:1. In
comparison, “brogrammermaid” (although an illegal generalized portmanteau) has a compression ratio of 24/14 = 1.71:1. So it is fair
to say that we are in the ballpark of a “solid portmanteau.” Of course, the gold standard is a compression ratio of ∞ : 1—for the
case that we have the word portmanteau, a totally overlapping portmanteau of portmanteau + portmanteau,6 iterated infinitely.

5There are some rubs: TSP requires that nodes only be visited once but a portmantout can use words multiple times. I believe that the multi-visit
generalization of TSP is also NP-hard. The portmantout solution also requires visiting every edge, but we can relax this by concatenating all edge words e
into a new mega-long word like e0ze1z . . . ek where z is also a fresh symbol; since this word must appear and all edges are substrings of it, we now have no
requirement that the rest of the solution (containing our TSP embedding) contains all edge words. This kind of trick also lets us set the start node for TSP.

6Cara Gillotti, personal communication, 2015.

— a b c d e f g h i j k l m
a anna arab arc add ace agof aleg ash ansi arconj ark ail am
b boa bib barc bad be barf bag bach bassi baconj back bail bum
c cia cab calc cod cue calf cog cash cacti conj calk call cum
d dada dab doc dad die dof dig dash deli deconj dank deal dam
e era ebb etc end eve elf egg each elhi econj elk eel elm
f feta fib farc fad fee fief fag fish fbi falconj fink fail farm
g gaga gab getc god gage gof gag gash genii garconj gawk gal gem
h hula hub hetc had he half hag hash haji hadj hack hail ham
i idea iamb isac ibid ice if ifag inch ifbi iconj ilk ill ibm
j java jab jarc jaded joe jiff jig josh jinni jehadj jack jail jam
k kaka kerb kepic kid kale kerf keg kith kepi kashadj kick keel kakam
l lava lab letc lad lie leaf lag lash levi loconj lack loll loam
m mama mob mac mad me miff meg mach magi maconj mack mail mom
n nasa nab narc nod name nof nag nigh nazi narconj nark nil nam
o ova orb orc odd ode of orig ooh ofbi oohadj oak oil ovum
p pea pub proc pad pee pelf peg path padri poconj pack pal palm
q qiana qaidab quebec qaid quake quaff quahog qoph quasi qophadj quack quail quam
r raga rib rabic rad rue ref rag rash rani reconj rack rail ram
s sea sob sac sad see sof sag sash ski shadj sack sail sam
t tea tub talc tad tee tof tag tach taxi taconj tack tail tim
u usa upub uric used use ufof ufog ugh ugli ughadj umiak ural unum
v via verb vetc veld vade vetof vying vetch verdi vaticonj vailk vail viam
w whoa web warc wad we waif wag wash wadi washadj wok wail warm
x xenia xmasob xebec xyloid xylene xmaself xmasag xmash xmaski xebeconj xmask xylitol xylem
y ymca yamob yetc yard yale yaref yang yeah yeti yeahadj yak yawl yam
z zeta zagab zinc zend zone zoof zag zooh zuni zinconj zooak zeal zoom

— n o p q r s t u v w x y z
a an ago amp airaq air as at adieu atv anew apex any abuzz
b ban bio bop bassiraq bar bus bat beau batv bow box by buzz
c can ciao cap colloq car cabs cat chou catv cow calx coy chez
d dan do dip deairaq dor dis dot dayou dotv dew deux day doyez
e eon ego emup emiraq ear ears eat emu eatv eraw eaux easy elfez
f fan faro fop firaq far fads fat flu fatv few fax fey fez
g gin go gap geniiraq gor gas get gnu getv glow galax gay grosz
h hen halo hip hairaq her has hat hemu hatv how hex hay hertz
i in ino imp iraq intr is it iflu itv ifew ibex icy ifez
j jean jato jeep jinniraq jar jabs jet juju jetv jaw jeux jay jazz
k ken kayo keep kafiraq kafir kays kit kudu kiev knew knox key klutz
l lain leo lap liraq lair labs let lieu letv law lax lay leviz
m man moo map magiraq moor macs mat menu mirv mow max my machez
n non no nap noiraq nor nabs net nehru netv new nix nay nertz
o on ono ofop obeliraq or oafs oat oflu oatv odew onyx obey oyez
p pan paso pep pairaq par pus pat peru patv paw pox pay phiz
q quean quito quip quasiraq qatar ques quit quipu quitv qaidew qophex quaky quiz
r ran redo rap raniraq rear rads rat ragnu ratv raw roux ray razz
s sin so sap siraq sir sos sat situ shiv saw sax say sitz
t tan to tap tapiraq tar tis tit tabu tv tow tax thy tviz
u urn ufo up ugliraq user us unit uperu univ upaw unix ugly uphiz
v van veto vamp viziraq veer vans vat virtu vatv vow vex vary viz
w win who warp weiraq war was wet wemu wetv wow wax way whiz
x xenon xmaso xmasp xebecolloq xyster xmas xmast xylemu xmashiv xmasaw xerox xenicy xmasitz
y yen yeno yep yetiraq year yes yet you yetv yaw yalex yamy yawhiz
z zen zoo zap zuniraq zoor zags zest zebu zestv zapaw zapox zany zaphiz

Figure 1: Minimal joining strings for every letter (rows) to every other letter (columns).

