
The Letter before Lambda is Hat: A

Reconstruction of Church’s Hat Calculus

Akiva Leffert
Cranberry-Melancholy University

SIGBOVIK 2007

Abstract: We present a reconstruction of Alonzo Church’s Hat Calculus
based on notes discovered under a book shelf. We present evidence that this
system was the precursor of the λ-calculus. We then describe the system
in full detail. We prove a lack of progress theorem. Finally, we prove an
undecidability result by reductio ad absurdem.

Keywords: Computability, Hats

1 Introduction

It is said by those with too much imagination that the λ-calclus sprang
fully formed from the head of Alonzo Church and that as he laid the α, β,
and η rules on paper, choruses of angels sang Hallelujahs. Those with less
imagination and perhaps more wit realize, as Edison said, that genius is
hard work and makes one sweaty. Indeed, even the character λ, namesake
of said calculus, was not in Church’s original work. The usual story is that
he borrowed notation from Russell and Whitehead’s Principia Mathematica,
which used a circumflex over variables to mark abstractions[1]. Church used
this early on, for example, writing the identity function as: x̂.x. However,
due to inferior typesetting technology, the circumflex shifted from above the
variable to its left like so: ˆx.x. This appearance of ˆ resembles a capital
lambda, Λ, which caused some other typesetter, mind no doubt dulled by too
much exposure to hot-lead, to use the lower-case λ we know and love. Thus,
except for a typographical accident, the λ-calculus would be known as the
circumflex-calculus or, more succinctly and colloquially, the hat-calculus.

This sepia-tinged tale of typography makes for a good story to tell little
freshlings flush with curiosity about the λ-calculus and the Entscheidungsproblem[3][6].

1

Harry Bovik, demonstrating his diverse talents, actually made a short film
about this[2] which was well received[5]. However, it is wrong in one im-
portant detail. Old notes of Church’s, recently discovered stuffed under a
shelf in the Princeton University Library suggest that this notation was in-
spired, not by Russell and Whitehead, but by an earlier system which Church
sketched out and described in those notes. The account of this discovery
can be found in [7]. This system of computation contained more literal hat
symbols - see Figure 1. In the remainder of this paper, we describe this
system, the Hat Calculus, and sketch a proof of the undecidability of the
Down-Feather Problem by reduction from the Halting Problem.

2 Hat Calculus Syntax and Semantics

The complete syntax of the Hat Calculus appears in Figure 2. This system
is considerably more, umm, baroque than the λ-calculus. This suggests that
Church learned a great deal from the development of this system, abandon-
ing it due to its complexity rather than any inherent computational weakness
of the system. Indeed, we later show that this system is Turing-complete.

Definition 2.1 (Up Feather): TheMsymbol is an up-feather.

Definition 2.2 (Down Feather): TheNsymbol is a down-feather.

Definition 2.3 (Banded Hat): A hat can be combined with a band to

create a banded hat. For example, aDcan be combined with aJto create

d. The latter is a banded hat. For the purposes of clarification we may,
but probably won’t, occasionally refer to hats without bands as naked hats.

Definition 2.4 (Banded Feathered Hat): Hats with bands can be com-

bined with feathers to create banded feathered hats. For example,eNis

a down feather banded hat as isdN.
Definition 2.5 (Action Card): All cards in the Hat-Calculus are the

same except for the action cards: ♠7 , the ♥8 , the ♥9 , ♥10 .
Definition 2.6 (Inaction Card): A card which is not an action card is

an inaction card.
Definition 2.7 (n-Carded Banded Hat): Each banded hat is actually

an n-carded banded hat for some n. An n-carded banded hat is a hat with n
cards associated with it. An uncarded hat is just the degenerate case when
n is zero. Note that while there are fifty-two (four times thirteen (two times

2

Figure 1: Excerpt From The Lost Notebook of Alonzo Church

3

hats H ::= A|B|C|D

feathers F ::= M|N

bands B ::= I| J| K
cards C ::=

♥ 2 | ♠ 2 | ♣ 2 | ♦ 2 |
♥ 3 | ♠ 3 | ♣ 3 | ♦ 3 |
♥ 4 | ♠ 4 | ♣ 4 | ♦ 4 |
♥ 5 | ♠ 5 | ♣ 5 | ♦ 5 |
♥ 6 | ♠ 6 | ♣ 6 | ♦ 6 |
♥ 7 | ♠ 7 | ♣ 7 | ♦ 7 |
♥ 8 | ♠ 8 | ♣ 8 | ♦ 8 |
♥ 9 | ♠ 9 | ♣ 9 | ♦ 9 |
♥ 10 | ♠ 10 | ♣ 10 | ♦ 10 |
♥ J | ♠ J | ♣ J | ♦ J |
♥ Q | ♠ Q | ♣ Q | ♦ Q |
♥ K | ♠ K | ♣ K | ♦ K |
♥ A | ♠ A | ♣ A | ♦ A

Figure 2: Hat-Calculus Syntax

4

two times thirteen)) cards, only four of the cards are distinguished by the
semantics of the language, the action cards. We suspect that Church was
perhaps not at his best when designing this system.

Definition 2.8 (Final State): A hat-calculus expression is considered
final if all of the feathers are down feathers.

The process of computation is the process of attaching bands to hats,
feathers and cards to banded-hats, and stacking hats on other hats. As in
the lamba-calculus, juxtoposition is application, in this case, application of

adhesive. Thus,CJsteps toc. Unfortunately, this convenient com-
bination notation doesn’t work as well as we add cards and feathers to hats.
Thus, we use the notation B(H,F, [C1, . . . , Cn]) to represent a completely
applied n-carded banded hat. If we wished to combine an n-carded banded
hat with another card, say, the King of Hearts, ♥K , we would write this like

so: B(H,F, [C1, . . . , Cn]) ♥K . This would step to B(H,F, [C1, . . . , Cn, ♥K).
Note that combining action cards has a different effect discussed later.

Hats can be stacked. If two hats are juxtaposed we combine them into a
stack. Stacks of hats can also be stacked in this manner. It is not possible
to combine a stack of hats with a single hat in this manner. The application
of a band to a stack of hats has the effect of applying that band to all of the
hats. If the band of a hat is replaced it loses all of its cards and feathers.

2.1 Action Cards

Combining the ♠7 card with a hat or stack of hats causes all of the feathers
to flip - i.e. all down feathers become up feathers and vice versa.

Combining the ♥8 card with a stack of hats removes all of the hats
from the top and bottom until a hat is reached with a down-feather.

Combining the ♥9 with a stack of hats duplicates the stack.

The ♥10 is the ungluer. It pulls all of the feathers, bands, and cards
off of a hat. It also creates a new action card at the end of the expression.
Which particular action card is chosen is non-deterministic.

3 Results

Definition 3.1 (Stuck): An expression of the Hat-Calculus is stuck if it
cannot step and is not a final state.

Theorem 3.1 (Lack of Progress): There exists a stuck state. Proof:

The expressioncMcannot step, but is not final.

5

Definition 3.2 (Down-Feather Problem): The down-feather problem
asks whether a given Hat-Calculus expression will reduce to a stuck state.

Theorem 3.2 (Universality): We’re pretty sure it’s Turing complete.
It’s got a queue or something.

Theorem 3.3 (Undecidability): The Down-Feather problem is unde-
cidable. Like we said, it’s probably Turing complete.

4 Conclusion

The Hat-Calculus was developed by Alonzo Church before the λ-calculus. It
is a Turing-complete language of computation with a rather ungainly syntax.
Actually, it’s unarguably nonsense[4]. Fortunately, Church later developed
the λ-calculus, which isn’t crap (we hope).

References

[1] Henk Barendregt. The impact of the lambda calculus on logic and com-
puter science. Bulletin of Symbolic Logic, 3(3):181–215, 1997.

[2] Harry Bovik. Lambda-calculus: The feature film extravangza. Feature
Film.

[3] Alonzo Church. A note on the Entscheidungsproblem. Journal of Sym-
bolic Logic, 1:40–41, 1936.

[4] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of
rules. Mathematical. Structures in Comp. Sci., 11(3):301–506, 2001.

[5] Fred Hacker. Harry Bovik shouldn’t be let near a camera. Letter to the
Editor.

[6] Richard Karp. The Entscheidungsproblem is probably NP-complete.
Private communication in an elevator.

[7] William Lovas and Tom Murphy VII. The hidden finds of janitorial
work. Proceedings of Found Stuff Symposium, 9(1):1299–1578, 2005.

6

